cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 106 results. Next

A359654 Number of vertices formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.

Original entry on oeis.org

4, 9, 77, 593, 6749, 15569, 93281, 222933, 623409, 1087393, 3453289, 5011009, 13271517
Offset: 1

Views

Author

Keywords

Comments

The number of points internal to each edge is given by A005728(n) - 2.

Crossrefs

Cf. A359653 (regions), A359655 (edges), A359656 (k-gons), A005728, A358887, A358883, A355799, A358949, A006842, A006843.

Formula

a(n) = A359655(n) - A359653(n) + 1 by Euler's formula.

A359968 Number of vertices formed inside a right triangle by the straight line segments mutually connecting all vertices and points on the two shorter edges whose positions equal the Farey series of order n.

Original entry on oeis.org

3, 6, 37, 195, 1467, 3408, 17113, 40435, 109638, 191718, 572939, 842487, 2139708, 3231583, 5261013
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along the shorter edges is A005728(n). No formula for a(n) is known. The sequence is inspired by the Farey fan; see A360042.

Crossrefs

Cf. A359969 (regions), A359970 (edges), A359971 (k-gons), A005728, A360042, A359974, A359690, A358949, A358887.

Formula

a(n) = A359970(n) - A359969(n) + 1 by Euler's formula.

A359974 Number of vertices formed inside a right triangle by the straight line segments mutually connecting all vertices and points on the two shorter edges whose positions on one edge equal the Farey series of order n while on the other they divide its length into n equal segments.

Original entry on oeis.org

3, 6, 26, 93, 424, 876, 2785, 5542, 11575, 18761, 40249, 57399, 109376, 155965, 227884, 322377, 532454, 676282, 1056010, 1334975, 1767798, 2240664, 3252047, 3882192, 5226897
Offset: 1

Views

Author

Keywords

Comments

The number of vertices on the edge with point positions equaling the Farey series of order n is A005728(n). No formula for a(n) is known.
This graph is related to the 'Farey fan' given in the reference.

References

  • McIlroy, M. D. "A Note on Discrete Representation of Lines". AT&T Technical Journal, 64 (1985), 481-490.

Crossrefs

Cf. A359975 (regions), A359976 (edges), A359977 (k-gons), A005728, A359968, A359690, A358949, A358887.

Formula

a(n) = A359976(n) - A359975(n) + 1 by Euler's formula.

A048134 Number of colors that can be mixed with up to n units of yellow, blue, red.

Original entry on oeis.org

0, 3, 6, 13, 22, 40, 55, 88, 118, 163, 205, 280, 334, 436, 517, 625, 733, 901, 1018, 1225, 1381, 1591, 1786, 2083, 2287, 2617, 2887, 3238, 3544, 4006, 4306, 4831, 5239, 5749, 6205, 6817, 7267, 8005, 8572, 9280, 9880, 10780, 11374, 12361
Offset: 0

Views

Author

Keywords

Examples

			a(2)=6: primary and secondary colors (Y^1, B^1, R^1, Y^1*B^1, Y^1*R^1, B^1*R^1).
		

Crossrefs

Two colors gives A005728.

Programs

Formula

a(n) = number of triples (i, j, k) with 1 <= i+j+k <= n and gcd(i, j, k) = 1.
Cumulative sums of A048240(k) for k>0.

Extensions

More terms from Robin Trew (trew(AT)hcs.harvard.edu).

A119983 Number of ways to partition 1 into reduced fractions i/j with j <= n.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 36, 59, 107, 189, 244, 494, 594, 1063, 3276, 5508, 5804, 12427, 12916, 42411, 131773, 167588, 168842, 428013, 839368, 1015502, 1968162, 5787287, 5791851, 15163759, 15170600, 28838713, 75983560, 82753548, 486356263, 1158442727, 1158464363
Offset: 1

Views

Author

Keywords

Comments

The reduced fractions are the Farey fractions of order n (A005728). - Robert G. Wilson v, Aug 30 2010

Examples

			a(3) = 4; 1 = 1/1 = 1/2 + 1/2 = 2/3 + 1/3 = 1/3 + 1/3 + 1/3.
		

Crossrefs

Cf. A000041, A020473, A115855 (one less), A115856.
Cf. A154886, A154888. - Reinhard Zumkeller, Jan 17 2009

Programs

  • Mathematica
    Farey[n_] := Union@ Flatten@ Table[a/b, {b, n}, {a, b}]; f[n_] := Length@ IntegerPartitions[1, All, Farey@ n]; Array[f, 27] (* Robert G. Wilson v, Aug 30 2010 *)

Formula

For p prime, a(p) = a(p-1) + P(p) - 1, where P is the partition function (A000041).

Extensions

Definition corrected by Reinhard Zumkeller, Jan 17 2009
a(21)-a(27) from Robert G. Wilson v, Aug 30 2010
More terms from Jinyuan Wang, Dec 12 2024

A133871 a(n) = the definite integral Integral_{0..1} Product_{j=1..n} 4*sin^2(Pi*j*x) dx.

Original entry on oeis.org

2, 4, 6, 10, 12, 20, 24, 34, 44, 64, 78, 116, 148, 208, 286, 410, 556, 808, 1120, 1620, 2308, 3352, 4784, 6980, 10064, 14680, 21296, 31128, 45276, 66288, 96712, 141654, 207156, 303716, 444748, 652612, 956884, 1404920, 2062080, 3029564, 4450120
Offset: 1

Views

Author

Thomas Ward, Jan 07 2008

Keywords

Comments

This quantity arises in some examples associated to the dynamical Mertens's theorem for quasihyperbolic toral automorphisms.
The function being integrated to compute a_n vanishes on the set of points in the Farey sequence of level n. I am particularly interested in knowing how large the sequence is asymptotically.
a(n) = coefficient of x^(n*(n+1)/2) in the polynomial (-1)^n*Product_{k=1..n} (1-x^k)^2, and is the maximal such coefficient as well. - Steven Finch, Feb 03 2009

Examples

			a(2) = 4 since Integral_{0..1} sin^2(Pi*x) sin^2(2*Pi*x) dx = 1/4.
		

Crossrefs

Programs

  • Maple
    a:= n->int(product(4*(sin(Pi*j*x))^2, j=1..n), x=0..1); seq(a(n), n=1..10);
    # second Maple program:
    A133871:= k -> (-1)^k*coeff(mul((t^j-1)^2,j=1..k),t,k*(k+1)/2);
    # Robert Israel, Mar 15 2013
  • Mathematica
    p = 1; Table[p = Expand[p*(1 - x^n)^2]; Max[(-1)^n*CoefficientList[p, x]], {n, 1, 100}] (* Vaclav Kotesovec, May 03 2018 *)
    (* The constant "d" *) Chop[-E^(-I*(Pi^2*(1 + 6*x^2) - 6*PolyLog[2, E^(2*I*Pi*x)]) / (6*Pi*x)) /. x -> (x /. FindRoot[Pi*(Pi*(-1 + 6*x^2) + 12*I*x*Log[1 - E^(2*I*Pi*x)]) + 6*PolyLog[2, E^(2*I*Pi*x)], {x, 4/5}, WorkingPrecision -> 100])] (* Vaclav Kotesovec, May 04 2018 *)
  • PARI
    a(n)=sum(k=0, n*(n+1)/2, polcoeff(prod(m=1, n, 1-x^m+x*O(x^k)), k)^2) \\ Paul D. Hanna

Formula

a(n) = sum of squares of coefficients in Product_{k=1..n} (1-x^k). - Paul D. Hanna, Nov 30 2010
a(n) ~ c * d^n / sqrt(n), where d = 1.48770584269062356180051131... and c = 2.40574583936181024... [Ward, 2013]. - Vaclav Kotesovec, May 03 2018

Extensions

More terms from Steven Finch, Feb 03 2009

A226999 Inverse Euler transform of A005169 (fountains of coins).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 93, 149, 248, 403, 671, 1098, 1827, 3013, 5013, 8313, 13859, 23063, 38534, 64341, 107715, 180355, 302565, 507784, 853507, 1435415, 2416941, 4072272, 6868062, 11590807, 19577555, 33088481, 55964327, 94712212
Offset: 1

Views

Author

R. J. Mathar, Jun 26 2013

Keywords

Comments

If G005169(x) = Sum_{i>=0} A005169(n)*x^n is the generating function of A005169, the a(n) are defined through G005169(x) = Product_{n>=1} 1/(1-x^n)^a(n), the inverse Euler transform of A005169.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.

Crossrefs

Programs

  • Mathematica
    max = 100;
    A005169 = Series[1 - Fold[Function[1 - x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]&;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[A005169 // Rest] (* Jean-François Alcover, Jan 06 2020 *)

Formula

a(n) ~ 1 / (n * r^n), where r = A347901 = 0.57614876914275660229786857371993878235472466311897446868515653431946822937499... - Vaclav Kotesovec, Oct 09 2019

A359692 Number of regions in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.

Original entry on oeis.org

2, 12, 94, 382, 2486, 4946, 24100, 53152, 138158, 233254, 700720, 999364, 2559344, 3785044, 6027148, 9210820
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along each edge is A005728(n). No formula for a(n) is known.

Crossrefs

Cf. A359690 (vertices), A359691 (crossings), A359693 (edges), A359694 (k-gons), A005728, A290131, A359653, A358886, A358882, A006842, A006843.

Formula

a(n) = A359693(n) - A359690(n) + 1 by Euler's formula.

A359969 Number of regions formed inside a right triangle by the straight line segments mutually connecting all vertices and points on the two shorter edges whose positions equal the Farey series of order n.

Original entry on oeis.org

1, 5, 48, 239, 1798, 3950, 19953, 46007, 123338, 213793, 637960, 930635, 2361080, 3542822, 5736344
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along the shorter edges is A005728(n). No formula for a(n) is known. The sequence is inspired by the Farey fan; see A360042.

Crossrefs

Cf. A359968 (vertices), A359970 (edges), A359971 (k-gons), A005728, A360042, A359975, A359690, A358948, A358886.

Formula

a(n) = A359970(n) - A359968(n) + 1 by Euler's formula.

A359970 Number of edges formed inside a right triangle by the straight line segments mutually connecting all vertices and points on the two shorter edges whose positions equal the Farey series of order n.

Original entry on oeis.org

3, 10, 84, 433, 3264, 7357, 37065, 86441, 232975, 405510, 1210898, 1773121, 4500787, 6774404, 10997356
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along the shorter edges is A005728(n). No formula for a(n) is known. The sequence is inspired by the Farey fan; see A360042.
See A359968 and A359969 for images of the triangle.

Crossrefs

Cf. A359968 (vertices), A359969 (regions), A359971 (k-gons), A005728, A360042, A359976, A359693, A358950, A358888.

Formula

a(n) = A359968(n) + A359969(n) - 1 by Euler's formula.
Previous Showing 51-60 of 106 results. Next