cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 103 results. Next

A344507 a(n) = [x^n] 2/(3*x + sqrt((1 - 3*x)*(x + 1)) + 1).

Original entry on oeis.org

1, -1, 2, -2, 5, -3, 15, 3, 59, 73, 308, 632, 1951, 4829, 13674, 36306, 100827, 275493, 765150, 2120466, 5918943, 16547595, 46452387, 130703031, 368825661, 1043125407, 2957013140, 8399389528, 23904802109, 68154435941, 194639738503, 556733127851, 1594781146419
Offset: 0

Views

Author

Peter Luschny, May 23 2021

Keywords

Crossrefs

Programs

  • Maple
    gf := 2/(3*x + sqrt((1 - 3*x)*(x + 1)) + 1):
    ser := series(gf, x, 27): seq(coeff(ser, x, n), n = 0..25);
    # Or:
    rgf := (x - 2*x^2) / (3*x^2 - 3*x + 1):
    subsop(1 = NULL, gfun:-seriestolist(series(rgf, x, 32), 'revogf'));
  • Mathematica
    a[n_] := Sum[(-2)^k Binomial[n, k] Hypergeometric2F1[(k - n)/2, (k - n + 1)/2, k + 2, 4], {k, 0, n}]; Table[a[n], {n, 0, 32}]
    (* Or: *)
    rgf := (x - 2 x^2) / (3 x^2 - 3 x + 1);
    CoefficientList[InverseSeries[Series[rgf, {x, 0, 32}]] / x, x]
  • SageMath
    R. = PowerSeriesRing(QQ, default_prec=32)
    f = (x - 2*x^2) / (3*x^2 - 3*x + 1)
    f.reverse().shift(-1).list()

Formula

a(n) = [x^n] reverse((x - 2*x^2) / (3*x^2 - 3*x + 1)) / x.
a(n) = Sum_{k=0..n}(-2)^k*binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4).
a(n) = (9*(n - 2)*a(n - 3) + (12*n - 15)*a(n - 2) + (n - 5)*a(n - 1))/(2*n + 2) for n >= 3.

A059715 Number of multi-directed animals on the triangular lattice.

Original entry on oeis.org

1, 3, 11, 44, 184, 790, 3450, 15242, 67895, 304267, 1369761, 6188002, 28031111, 127253141, 578694237, 2635356807, 12015117401, 54831125131, 250418753498, 1144434017309
Offset: 1

Views

Author

Keywords

Comments

Counts certain animals that generalize directed animals. They are also equinumerous with a class of n-ominoes studied by Klarner in 1967.

Crossrefs

Programs

  • Mathematica
    terms = 12;
    c[g_, t_] := c[g, t] = Sum[c[g, n, t], {n, 0, 2 terms}];
    c[g_, n_, t_] := c[g, n, t] = P[g, n, t] - Sum[c[g, k, t] P[g, n-k-1, t], {k, 0, n-1}];
    P[g_, n_, t_] := 1/F[g, n, t];
    F[g_, n_, t_] := F[g, n, t] = If[n<=g, 1, F[g, n-1, t] - t F[g, n-g-1, t]];
    Rest[CoefficientList[1-1/c[1, t] + O[t]^(terms+1), t]][[1 ;; terms]] (* Jean-François Alcover, Jul 25 2018 *)

Formula

The generating function is known in closed form. It is big and non-D-finite.
Bultel-Giraudo (2014), Prop. 3.2, give a g.f. - N. J. A. Sloane, Sep 21 2014
Conjecture: a(n) = Sum_{j=0..n-1} R(n-1, j) for n > 0 where R(n, j) = Sum_{p=0..n - j - 1} binomial(j + p + 2, p + 1)*R(n - j - 1, p) for 0 <= j < n with R(n, n) = 1. - Mikhail Kurkov, Aug 09 2023
a(n) ~ c * d^n, where d = 4.5878943629412631496341355193804435266001072071... and c = 0.0653089423402623226212483954648487116904937... - Vaclav Kotesovec, Aug 13 2023

A135308 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k DUUU's.

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 35, 7, 96, 36, 267, 159, 3, 750, 645, 35, 2123, 2475, 264, 6046, 9136, 1602, 12, 17303, 32773, 8515, 195, 49721, 115017, 41349, 1925, 143365, 396730, 188010, 14740, 55, 414584, 1349440, 813072, 96200, 1144, 1201917, 4537368
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Row n has floor((n+2)/3) terms (n>=1). Row sums yield the Catalan numbers (A000108). Column 0 yields A005773. - Emeric Deutsch, Dec 13 2007

Examples

			Triangle begins:
  1
  1
  2
  5
  13 1
  35 7
  96 36
  267 159 3
  ...
T(5,1) = 7 because we have UDUUUUDDDD, UDUUUDUDD, UDUUUDDUDD, UDUUUDDDUD, UDUDUUUDDD, UUDUUUDDDD and UUDDUUUDDD.
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: binomial(n,k)*(sum((-1)^(j-k+1)*3^(n-j)*binomial(n-k,j-k)*binomial(2*j-2-3*k,j-1),j=3*k+1..n))/n end proc: 1; for n to 15 do seq(T(n,k),k=0..floor((n-1)*1/3)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 13 2007
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [1, 3, 4, 1][t])
          * `if`(t=4, z, 1) +b(x-1, y-1, [2, 2, 2, 2][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    T[n_, k_] := (1/n)*Binomial[n, k]*Sum[(-1)^(j-k+1)*3^(n-j)*Binomial[n-k, j-k]*Binomial[2j-2-3k, j-1], {j, 3k+1, n}]; T[0, 0] = 1; Table[T[n, k], {n, 0, 15}, {k, 0, If[n == 0, 0, Quotient[n-1, 3]]}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Emeric Deutsch *)

Formula

From Emeric Deutsch, Dec 13 2007: (Start)
T(n,k) = (1/n)*C(n,k)*Sum_{j=3*k+1..n} (-1)^(j-k+1)*3^(n-j)*C(n-k,j-k)*C(2*j-2-3*k,j-1) (n>=1).
G.f.: F=F(t,z) satisfies tzF^3 + [3(1-t)z-1]F^2 - [3(1-t)z-1]F + (1-t)z = 0. (End)

Extensions

Edited and extended by Emeric Deutsch, Dec 13 2007

A155083 A directed animal related triangle.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 6, 1, 13, 29, 25, 10, 1, 35, 92, 100, 55, 15, 1, 96, 291, 377, 266, 105, 21, 1, 267, 915, 1375, 1169, 602, 182, 28, 1
Offset: 0

Views

Author

Paul Barry, Jan 19 2009

Keywords

Comments

First column is A005773. Row sums are A129775.

Examples

			Triangle begins
1,
1, 1,
2, 3, 1,
5, 9, 6, 1,
13, 29, 25, 10, 1,
35, 92, 100, 55, 15, 1,
96, 291, 377, 266, 105, 21, 1,
267, 915, 1375, 1169, 602, 182, 28, 1
		

Formula

G.f.: 1/(1-xy-x/(1-x-xy-x^2/(1-x-xy-x^2/(1-x-xy-x^2/(1-...))))) (continued fraction).

A171505 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A059738.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 34, 29, 9, 1, 117, 128, 57, 12, 1, 405, 538, 309, 94, 15, 1, 1407, 2192, 1533, 604, 140, 18, 1, 4899, 8740, 7179, 3453, 1040, 195, 21, 1, 17083, 34296, 32278, 18264, 6730, 1644, 259, 24, 1, 59629, 132929, 140790, 91372, 39668, 11877, 2443
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to B*A096164 = A171488*B, B=A007318.

Examples

			Triangle begins :
1 ;
3, 1 ;
10, 6, 1 ;
34, 29, 9, 1 ;
117, 128, 57, 12, 1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -3, -2, -1, 0 respectively.
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-2)^i. - Philippe Deléham, Feb 23 2012

A178113 Transform of C(n+1,floor((n+1)/2)) by A178112.

Original entry on oeis.org

1, 2, 2, 4, 5, 10, 13, 26, 35, 70, 96, 192, 267, 534, 750, 1500, 2123, 4246, 6046, 12092, 17303, 34606, 49721, 99442, 143365, 286730, 414584, 829168, 1201917, 2403834, 3492117, 6984234, 10165779, 20331558, 29643870, 59287740, 86574831, 173149662
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Hankel transform is A178115.

Crossrefs

Formula

a(n) = Sum_{k=0..n} C(floor(n/2),floor(k/2))*((1+(-1)^(n-k))/2)*C(k+1,floor((k+1)/2)). [The formula seems to generate A026392, not these terms. - R. J. Mathar, Feb 10 2015]
Conjecture: a(2*n) = A005773(n+1), a(2*n+1) = 2*a(2*n). - Jason Yuen, Feb 09 2025

A263841 Expansion of (1 - 2*x - x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x) - 1/(2*x).

Original entry on oeis.org

1, 3, 9, 28, 87, 271, 843, 2619, 8123, 25153, 77763, 240054, 740017, 2278329, 7006093, 21520872, 66039651, 202462113, 620164491, 1898109900, 5805127269, 17741909157, 54188530641, 165405964227, 504601360389, 1538559689751, 4688812503053, 14282580916834, 43486805133903
Offset: 0

Views

Author

N. J. A. Sloane, Nov 02 2015

Keywords

Crossrefs

Programs

  • Maple
    A263841 := n -> add((k+1)*binomial(n, k)*binomial(n-k, iquo(n-k,2)), k = 0 .. n):
    seq(A263841(n), n = 0 .. 28); # Mélika Tebni, Jan 25 2024
  • Mathematica
    CoefficientList[Series[(1-2x-x^2)/(Sqrt[1+x] (1-3x)^(3/2) 2x)-1/(2x),{x,0,30}],x] (* Harvey P. Dale, Aug 21 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x-x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x)-1/(2*x)) \\ Altug Alkan, Nov 10 2015

Formula

D-finite with recurrence: -(n+1)*(n^2+n-3)*a(n) + 2*(n^3+3*n^2-4*n-3)*a(n-1) + 3*(n-1)*(n^2+3*n-1)*a(n-2) = 0. - R. J. Mathar, Feb 17 2016
From Mélika Tebni, Jan 24 2024: (Start)
a(n) = A005773(n+1) + A132894(n).
E.g.f.: (1+x)*exp(x)*(BesselI(0,2*x) + BesselI(1,2*x)). (End)
From Mélika Tebni, Jan 25 2024: (Start)
a(n) = Sum_{k=0..n} A189911(k)*binomial(n,k).
a(n) = Sum_{k=0..n} (k+1)*binomial(n,k)*binomial(n-k,floor((n-k)/2)). (End)

A290265 The number of non-palindromic Motzkin paths of length n.

Original entry on oeis.org

0, 0, 0, 2, 4, 16, 38, 114, 288, 800, 2092, 5702, 15244, 41568, 112884, 309822, 851344, 2354656, 6530336, 18193238, 50834716, 142530256, 400713502, 1129710694, 3192584432, 9043259136, 25669403892, 73007358218, 208022076292, 593741582912, 1697381979094, 4859758184274, 13933559180928
Offset: 0

Views

Author

R. J. Mathar, Jul 25 2017

Keywords

Comments

The Motzkin paths (A001006) are classified here as either palindromic or non-palindromic. The latter are counted by the sequence 1, 1, 2, 2, 3, 3, 5, 5..., offset 0, i.e., entries of A005773 repeated.
Non-palindromic means, there is at least one step of the n (say, the s-th) which does not match the (n-s+1)st step. Not matching means, if the s-th step is U, the (n-s+1)st step is not D, or if the s-th step is F (sometimes also denoted H), the (n-s+1)st step is not F.
All terms are even (because a non-palindromic path reversed creates a different non-palindromic path).

Crossrefs

Programs

  • Maple
    A290265 := proc(n)
        A001006(n)-A005773(1+floor(n/2)) ;
    end proc:
    seq( A290265(n),n=0..60) ;
  • Mathematica
    a001006[n_]:=Hypergeometric2F1[(1-n)/2, -n/2, 2, 4]; a005773[n_]:=If[n==0, 1, Sum[k*Sum[Binomial[n, j]*Binomial[j, 2*j-n-k], {j, 0, n}]/n, {k, 1, n}]]; Table[a001006[n] - a005773[1 + Floor[n/2]], {n, 0, 50}] (* Indranil Ghosh, Aug 04 2017 *)

Formula

a(n) = A001006(n)-A005773(1+floor(n/2)).
Conjecture: -(16*n-47)*(n+2)*(n+1)*a(n) -(n+1)*(9*n^2-167*n+188)*a(n-1) +n*(139*n^2-450*n+59)*a(n-2) +(n-1)*(187*n^2-1619*n+2250)*a(n-3) -(n-2)*(97*n^2+346*n-2255)*a(n-4) +(-311*n^3+2398*n^2-5779*n+4112)*a(n-5) +3*(-153*n^3+1458*n^2-4361*n+4348)*a(n-6) -3*(n-6)*(169*n^2-1152*n+1799)*a(n-7) -9*(n-6)*(n-7)*(23*n-82)*a(n-8)=0.

A292630 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*(BesselI(0,2*x) + BesselI(1,2*x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 6, 1, 5, 17, 35, 35, 10, 1, 6, 26, 75, 126, 96, 20, 1, 7, 37, 139, 339, 462, 267, 35, 1, 8, 50, 233, 758, 1558, 1716, 750, 70, 1, 9, 65, 363, 1491, 4194, 7247, 6435, 2123, 126, 1, 10, 82, 535, 2670, 9660, 23460, 34016, 24310, 6046, 252, 1, 11, 101, 755, 4451, 19846, 63195, 132339, 160795, 92378, 17303, 462
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A001405 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 2)*x^2/2! +  (k^3 + 3*k^2 + 6*k + 3)*x^3/3! + (k^4 + 4*k^3 + 12*k^2 + 12*k + 6)*x^4/4! + ...
Square array begins:
   1,   1,    1,     1,     1,     1,  ...
   1,   2,    3,     4,     5,     6,  ...
   2,   5,   10,    17,    26,    37,  ...
   3,  13,   35,    75,   139,   233,  ...
   6,  35,  126,   339,   758,  1491,  ...
  10,  96,  462,  1558,  4194,  9660,  ...
		

Crossrefs

Columns k=0..5 give A001405, A005773 (with first term deleted), A001700, A026378 (with offset 0), A005573, A122898.
Main diagonal gives A292631.

Programs

  • Maple
    [seq(seq((k)!*add((m-j)^(j-i)/floor(i/2)!/ceil(i/2)!/(j-i)!,i=0..j),j=0..m), m=0..20)]; # Robert Israel, Sep 20 2017
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x] (BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(k*x)*(BesselI(0,2*x) + BesselI(1,2*x)).

A296449 Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.

Original entry on oeis.org

1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1

Views

Author

R. J. Mathar, Dec 13 2017

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   3,  7, 17;
   4, 10, 26,  68;
   5, 13, 35,  95, 259;
   6, 16, 44, 122, 340,  950;
   7, 19, 53, 149, 421, 1193, 3387;
   8, 22, 62, 176, 502, 1436, 4116, 11814;
   9, 25, 71, 203, 583, 1679, 4845, 14001, 40503;
  10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
		

Crossrefs

Cf. A081113 (diagonal), A000079 (2nd row), A001333 (3rd row), A126358, A057960, A126360, A002714, A126362, A188866.

Programs

  • Maple
    Inm := proc(n,m)
        if m >= n then
            (n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1)
                +2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ;
        else
            0 ;
        end if;
    end proc:
    for m from 1 to 13 do
    for n from 1 to m do
        printf("%a,",Inm(n,m)) ;
    end do:
    printf("\n") ;
    end do:
    # Second program:
    A296449row := proc(n) local gf, ser;
    gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 +
    ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2;
    ser := n -> series(expand(gf(n)), x, n + 1);
    seq(coeff(ser(n), x, k), k = 1..n) end:
    for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
  • Mathematica
    (* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
    (* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}];
    Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0];
    Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)

Formula

I(m,n) = (n+2)*3^(n-2) + (m-n)*Sum_{i=0..n-1} A005773(i)*A005773(n-i) + 2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corr. 2.10]
I(m,n) = A188866(m-1,n) for m > 1. - Pontus von Brömssen, Sep 06 2021
Previous Showing 71-80 of 103 results. Next