cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A224318 Number of 2-vexillary permutations in S_n, that, permutations whose Stanley symmetric function has at most 2 terms or at most 2 Edelman-Greene tableaux.

Original entry on oeis.org

1, 1, 2, 6, 24, 118, 661, 4011, 25654, 170420, 1165697
Offset: 0

Views

Author

Sara Billey, Apr 03 2013

Keywords

Comments

This family is characterized by a finite set of permutation patterns.

Crossrefs

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2019

A239299 Number of words of length n over the alphabet {0,...,n-1} that are 1234-avoiding.

Original entry on oeis.org

1, 1, 4, 27, 255, 3028, 41979, 647790, 10803237, 191122140, 3542732908, 68213661464, 1355643940248, 27673150807344, 578051855658450, 12318499151821116, 267156147212406393, 5884501351433388108, 131418738987996420708, 2971588663914996425000
Offset: 0

Views

Author

Chad Brewbaker, Mar 14 2014

Keywords

Crossrefs

The permutation analog is A005802.

Programs

  • Maple
    # for an efficient program see link above.
    # for initial terms only:
    b:= proc(n, s, u, t) option remember; `if`(n=0, 1,
          add(b(n-1, min(s, i), min(u, `if`(s b(n, n+1$3):
    seq(a(n), n=0..20); # Alois P. Heinz, Mar 18 2014
  • Mathematica
    b[n_, s_, u_, t_] := b[n, s, u, t] = If[n == 0, 1,
        Sum[b[n - 1, Min[s, i], Min[u, If[s < i, i, u]],
        Min[t, If[u < i, i + 1, t]]], {i, 1, t - 1}]];
    a[n_] := b[n, n+1, n+1, n+1];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

Recurrence (of order 3): 9*(n-3)^2*(n-2)*n*(n+2)^2*(1057*n^7 - 19522*n^6 + 153671*n^5 - 668749*n^4 + 1738472*n^3 - 2700169*n^2 + 2319664*n - 849696)*a(n) = (n-3)*(327670*n^12 - 7739849*n^11 + 80785028*n^10 - 489037999*n^9 + 1890857973*n^8 - 4828424052*n^7 + 8060049557*n^6 - 8146857268*n^5 + 3520960348*n^4 + 1831667104*n^3 - 3220309536*n^2 + 1597874688*n - 295612416)*a(n-1) - (n-4)*(1633065*n^12 - 41573919*n^11 + 478203433*n^10 - 3285690086*n^9 + 15017055239*n^8 - 48092317343*n^7 + 110651362619*n^6 - 184276357364*n^5 + 220420044268*n^4 - 184591308504*n^3 + 102631197456*n^2 - 33947092224*n + 5033249280)*a(n-2) + 8*(n-5)*(n-4)^2*(2*n-5)*(4*n-11)*(4*n-9)*(1057*n^7 - 12123*n^6 + 58736*n^5 - 156229*n^4 + 246741*n^3 - 231170*n^2 + 118368*n - 25272)*a(n-3). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 2^(8*n-3/2) / (7^4 * Pi^(3/2) * n^(9/2) * 3^(2*n-9)). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..3} A245667(n,k). - Alois P. Heinz, Jul 31 2014

Extensions

a(8)-a(10) from Giovanni Resta, Mar 14 2014
a(11)-a(19) from Alois P. Heinz, Mar 17 2014

A342646 Maximal number of 4213 patterns in a permutation of 1,2,...,n.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 13, 24, 40, 62, 96, 138, 192, 264, 354
Offset: 0

Views

Author

Peter Kagey, Mar 20 2021

Keywords

Comments

Equivalently the maximal number of 1342, 2431, and 3124 patterns.

Examples

			For n = 7, a(7) = 13 because the permutation 7532146 has 13 instances of the pattern 4213, namely: 7536, 7526, 7516, 7546, 7324, 7326, 7314, 7316, 7214, 7216, 5324, 5314, and 5214.
Moreover, all other permutations in S_7 have 13 or fewer instances of this pattern.
		

Crossrefs

Analogous for other patterns: A000292 (123), A000332 (1234), A061061 (132), A100354 (1432).

Extensions

a(10)-a(12) from Rob Pratt
a(13)-a(15) from Bert Dobbelaere, Mar 26 2021

A224287 Number of multiplicity free permutations in S_n, i.e., permutations whose Stanley symmetric function is multiplicity free.

Original entry on oeis.org

1, 2, 6, 24, 120, 718, 4956, 38180, 319280, 2837959
Offset: 1

Views

Author

Sara Billey, Apr 04 2013

Keywords

Comments

This family is conjectured to be characterized by a finite set of patterns up to S_11.

Crossrefs

A246513 a(n) = (4/n^2)*( Sum_{k=0..n-1} k*A246459(k) ).

Original entry on oeis.org

0, 7, 52, 378, 2832, 21785, 171036, 1364391, 11023264, 89985681, 740894700, 6144227430, 51267563280, 430045297695, 3623966778180, 30662599042530, 260367332354496, 2217928838577641, 18947382204700044, 162281586037920126
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 28 2014

Keywords

Comments

Conjecture: a(n) is always an integer.
Note: the formula for a(n) in terms of A005802 proves that a(n) is an integer, divisible by n-1. - Mark van Hoeij, Nov 06 2023

Examples

			a(2) = 7 since (4/2^2)*( Sum_{k=0..1} k*A246459(k) ) = A246459(1) = 7.
		

Crossrefs

Programs

  • Maple
    h := n -> hypergeom([1/2, 1 - n, -n], [2, 2], 4):
    a := n -> (n - 1) * ((n + 1)^2 * h(n) / n - n * h(n - 1)):
    seq(simplify(a(n)), n = 1..20);  # Peter Luschny, Nov 06 2023
    ogf := (((-54*x^4+18*x^3+30*x^2+6*x)*hypergeom([4/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)+(-1701*x^3+783*x^2-111*x+5)*hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2))/(1-9*x)^(8/3) - 5)/6;
    series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
  • Mathematica
    s[n_] := Sum[Binomial[n, k]^2 Binomial[2 k, k] (2 k + 1), {k, 0, n}]
    a[n_] := Sum[k s[k], {k, 0, n-1}] 4/n^2
    Table[a[n], {n, 1, 20}]

Formula

Recurrence: (n-2)*n^2*(2*n-7)*(4*n-5)*a(n) = (n-1)*(80*n^4 - 532*n^3 + 1126*n^2 - 893*n + 195)*a(n-1) - 9*(n-2)^2*(n-1)*(2*n-5)*(4*n-1)*a(n-2). - Vaclav Kotesovec, Aug 28 2014
a(n) ~ 3^(2*n+1/2) / (2*Pi*n). - Vaclav Kotesovec, Aug 28 2014
a(n) = (n-1) * ((n+1)^2 * A005802(n-1) - (n-1)*n * A005802(n-2)). - Mark van Hoeij, Nov 06 2023

A128079 a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1), where A000984 is the central binomial coefficients and A001263 is the Narayana triangle.

Original entry on oeis.org

1, 3, 13, 69, 411, 2633, 17739, 124029, 892327, 6567285, 49235715, 374841195, 2890994445, 22545855855, 177524073021, 1409591810133, 11275693221519, 90792020672429, 735367765159347, 5987665336600683, 48987680485918149
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2007

Keywords

Examples

			Illustrate a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1) by:
a(2) = 1*(1) + 2*(3) + 6*(1) = 13;
a(3) = 1*(1) + 2*(6) + 6*(6) + 20*(1) = 69;
a(4) = 1*(1) + 2*(10)+ 6*(20)+ 20*(10)+ 70*(1) = 411.
The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 20, 10, 1;
1, 15, 50, 50, 15, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1))}

Formula

a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1).
Recurrence: (n+1)*(n+2)*a(n) = (7*n^2+11*n+6)*a(n-1) + 3*(7*n^2-19*n+6)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+7/2)/(8*Pi*n^2) . - Vaclav Kotesovec, Oct 20 2012
a(n) = ((n+3)^2*A005802(n+1)-(n-3)*(n+1)*A005802(n))/12. - Mark van Hoeij, Nov 12 2023

A135395 Number of walks of length 2n+3 from origin to (1,1,1) on a cubic lattice.

Original entry on oeis.org

6, 180, 5040, 143640, 4199580, 125621496, 3830266440, 118655943120, 3724872182460, 118248726796200, 3789926661961440, 122473276342326000, 3986235855826497000, 130561182081992667600, 4300094066688571550400
Offset: 0

Views

Author

Stefan Hollos (stefan(AT)exstrom.com), Dec 11 2007

Keywords

Comments

a(n) is the number of walks of length 2*n+3 in a cubic lattice that begin at the origin and end at (1,1,1) using steps (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1).

Crossrefs

Cf. A002896.

Programs

  • Maple
    sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
    H1 := hypergeom([7/6,1/3],[1],pb); H2 := hypergeom([1/6,4/3],[1],pb);
    fa := (10-72*x-6*sq)^(1/2)/(432*x^3);
    ogf := fa*((648*x^2-162*x+(54*x+3)*sq+5)*H1^2 - (648*x^2-342*x+(54*x+6)*sq+10)*H1*H2 - (180*x-5-3*sq)*H2^2);
    series(ogf,x=0,20) # Mark van Hoeij, Nov 12 2011
  • Mathematica
    Table[Binomial[2n+3,n]Sum[Binomial[n,k]Binomial[n+3,k+2]Binomial[2k+2,k+1],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 20 2012 *)
  • Maxima
    a(n) = binomial(2n+3,n) * sum( binomial(n,k) * binomial(n+3,k+2) * binomial(2k+2,k+1), k, 0, n )
    
  • PARI
    a(n) = binomial(2*n+3,n) * sum(k=0,n, binomial(n,k) * binomial(n+3,k+2) * binomial(2*k+2,k+1)) \\ Charles R Greathouse IV, Oct 12 2016

Formula

a(n) = binomial(2n+3,n) * Sum_{k=0..n} (binomial(n,k) * binomial(n+3,k+2) * binomial(2k+2,k+1)).
G.f.: ((12*(4*x-1)*(36*x-1)/x)*g'' + (12*(288*x^2-60*x+1)/x^2)*g' + (72*(6*x-1)/x^2)*g)/288 where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
From Vaclav Kotesovec, Nov 27 2017: (Start)
Recurrence: n*(n+2)*(n+3)*a(n) = 4*(2*n + 3)*(5*n^2 + 10*n + 3)*a(n-1) - 36*n*(2*n + 1)*(2*n + 3)*a(n-2).
a(n) ~ 2^(2*n + 1) * 3^(2*n + 9/2) / (Pi*n)^(3/2). (End)
a(n) = (2*n+1)*(2*n+3)*binomial(2*n,n)*((n+3)*A005802(n+1)-(n+1)*A005802(n)). - Mark van Hoeij, Nov 12 2023

A212884 Number of permutations in S_n whose Rothe diagram can be rearranged to give the complement of a skew shape.

Original entry on oeis.org

1, 1, 2, 6, 24, 112, 572, 3116, 17871, 106959, 663526, 4243490, 27856087, 187029655, 1280660596, 8921737864, 63108620169, 452503644985, 3284213633684, 24098433889312, 178583179551488, 1335346240984360
Offset: 0

Views

Author

Joel B. Lewis, May 29 2012

Keywords

Comments

Equivalent definitions:
(1) Permutations that have the form (a_1, a_2, ..., a_k, b_1, b_2, ..., b_(n - k)), where the subsequences (a_1, a_2, ..., a_k) and (b_1, b_2, ..., b_(n - k)) avoid the permutation pattern 2143 and a_i < b_j for all i, j.
(2) Permutations that avoid the nine permutation patterns 24153, 25143, 31524, 31542, 32514, 32541, 42153, 52143, and 214365.

Formula

Ordinary g.f. is (1 - x)*V(x)^2 - V(x) + 1/(1 - x), where V(x) is the (ordinary) g.f. for A005802.

A223034 Number of 3-vexillary permutations in S_n, that is, permutations whose Stanley symmetric function has at most 3 terms or at most 3 Edelman-Greene tableaux.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 705, 4553, 30930, 216412, 1545469
Offset: 0

Views

Author

Sara Billey, Apr 04 2013

Keywords

Comments

This family is characterized by a finite set of permutation patterns.

Crossrefs

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2019

A224249 Number of permutations in S_n containing exactly 2 increasing subsequences of length 4.

Original entry on oeis.org

0, 0, 0, 0, 4, 63, 665, 5982, 49748, 396642, 3089010, 23745117, 181282899, 1379847138, 10496697584, 79928658289, 609847716251, 4665446254886, 35801131210504, 275638351332190, 2129514056354378, 16509890253429971, 128449405928666831, 1002835093225654416, 7856166360951643384
Offset: 1

Views

Author

Brian Nakamura, Apr 02 2013

Keywords

Crossrefs

Programs

  • Maple
    # programs can be obtained from the Nakamura and Zeilberger link.
Previous Showing 21-30 of 36 results. Next