A224318
Number of 2-vexillary permutations in S_n, that, permutations whose Stanley symmetric function has at most 2 terms or at most 2 Edelman-Greene tableaux.
Original entry on oeis.org
1, 1, 2, 6, 24, 118, 661, 4011, 25654, 170420, 1165697
Offset: 0
- S. Billey and B. Pawlowski, Permutation Patterns, Stanley symmetric functions and generalized Specht modules, arXiv:1304.7870 [math.CO], 2013.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
A239299
Number of words of length n over the alphabet {0,...,n-1} that are 1234-avoiding.
Original entry on oeis.org
1, 1, 4, 27, 255, 3028, 41979, 647790, 10803237, 191122140, 3542732908, 68213661464, 1355643940248, 27673150807344, 578051855658450, 12318499151821116, 267156147212406393, 5884501351433388108, 131418738987996420708, 2971588663914996425000
Offset: 0
-
# for an efficient program see link above.
# for initial terms only:
b:= proc(n, s, u, t) option remember; `if`(n=0, 1,
add(b(n-1, min(s, i), min(u, `if`(s b(n, n+1$3):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 18 2014
-
b[n_, s_, u_, t_] := b[n, s, u, t] = If[n == 0, 1,
Sum[b[n - 1, Min[s, i], Min[u, If[s < i, i, u]],
Min[t, If[u < i, i + 1, t]]], {i, 1, t - 1}]];
a[n_] := b[n, n+1, n+1, n+1];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
A342646
Maximal number of 4213 patterns in a permutation of 1,2,...,n.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 6, 13, 24, 40, 62, 96, 138, 192, 264, 354
Offset: 0
For n = 7, a(7) = 13 because the permutation 7532146 has 13 instances of the pattern 4213, namely: 7536, 7526, 7516, 7546, 7324, 7326, 7314, 7316, 7214, 7216, 5324, 5314, and 5214.
Moreover, all other permutations in S_7 have 13 or fewer instances of this pattern.
- M. H. Albert, M. D. Atkinson, C. C.Handley, D. A. Holton, and W. Stromquist, On packing densities of permutations, The Electronic Journal of Combinatorics, 9(1) (2002).
- David Bevan, The permutation class Av(4213,2143), arXiv:1510.06328 [math.CO], 2015.
- FindStat, St000750: The number of occurrences of the pattern 4213 in a permutation.
- Rob Pratt, Greatest number of occurrences of the pattern 4213 in a permutation, Mathematics Stack Exchange.
- Eric Weisstein's World of Mathematics, Permutation Pattern
A224287
Number of multiplicity free permutations in S_n, i.e., permutations whose Stanley symmetric function is multiplicity free.
Original entry on oeis.org
1, 2, 6, 24, 120, 718, 4956, 38180, 319280, 2837959
Offset: 1
A246513
a(n) = (4/n^2)*( Sum_{k=0..n-1} k*A246459(k) ).
Original entry on oeis.org
0, 7, 52, 378, 2832, 21785, 171036, 1364391, 11023264, 89985681, 740894700, 6144227430, 51267563280, 430045297695, 3623966778180, 30662599042530, 260367332354496, 2217928838577641, 18947382204700044, 162281586037920126
Offset: 1
a(2) = 7 since (4/2^2)*( Sum_{k=0..1} k*A246459(k) ) = A246459(1) = 7.
-
h := n -> hypergeom([1/2, 1 - n, -n], [2, 2], 4):
a := n -> (n - 1) * ((n + 1)^2 * h(n) / n - n * h(n - 1)):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 06 2023
ogf := (((-54*x^4+18*x^3+30*x^2+6*x)*hypergeom([4/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)+(-1701*x^3+783*x^2-111*x+5)*hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2))/(1-9*x)^(8/3) - 5)/6;
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
-
s[n_] := Sum[Binomial[n, k]^2 Binomial[2 k, k] (2 k + 1), {k, 0, n}]
a[n_] := Sum[k s[k], {k, 0, n-1}] 4/n^2
Table[a[n], {n, 1, 20}]
A128079
a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1), where A000984 is the central binomial coefficients and A001263 is the Narayana triangle.
Original entry on oeis.org
1, 3, 13, 69, 411, 2633, 17739, 124029, 892327, 6567285, 49235715, 374841195, 2890994445, 22545855855, 177524073021, 1409591810133, 11275693221519, 90792020672429, 735367765159347, 5987665336600683, 48987680485918149
Offset: 0
Illustrate a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1) by:
a(2) = 1*(1) + 2*(3) + 6*(1) = 13;
a(3) = 1*(1) + 2*(6) + 6*(6) + 20*(1) = 69;
a(4) = 1*(1) + 2*(10)+ 6*(20)+ 20*(10)+ 70*(1) = 411.
The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 20, 10, 1;
1, 15, 50, 50, 15, 1; ...
-
Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1))}
A135395
Number of walks of length 2n+3 from origin to (1,1,1) on a cubic lattice.
Original entry on oeis.org
6, 180, 5040, 143640, 4199580, 125621496, 3830266440, 118655943120, 3724872182460, 118248726796200, 3789926661961440, 122473276342326000, 3986235855826497000, 130561182081992667600, 4300094066688571550400
Offset: 0
Stefan Hollos (stefan(AT)exstrom.com), Dec 11 2007
-
sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
H1 := hypergeom([7/6,1/3],[1],pb); H2 := hypergeom([1/6,4/3],[1],pb);
fa := (10-72*x-6*sq)^(1/2)/(432*x^3);
ogf := fa*((648*x^2-162*x+(54*x+3)*sq+5)*H1^2 - (648*x^2-342*x+(54*x+6)*sq+10)*H1*H2 - (180*x-5-3*sq)*H2^2);
series(ogf,x=0,20) # Mark van Hoeij, Nov 12 2011
-
Table[Binomial[2n+3,n]Sum[Binomial[n,k]Binomial[n+3,k+2]Binomial[2k+2,k+1],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 20 2012 *)
-
a(n) = binomial(2n+3,n) * sum( binomial(n,k) * binomial(n+3,k+2) * binomial(2k+2,k+1), k, 0, n )
-
a(n) = binomial(2*n+3,n) * sum(k=0,n, binomial(n,k) * binomial(n+3,k+2) * binomial(2*k+2,k+1)) \\ Charles R Greathouse IV, Oct 12 2016
A212884
Number of permutations in S_n whose Rothe diagram can be rearranged to give the complement of a skew shape.
Original entry on oeis.org
1, 1, 2, 6, 24, 112, 572, 3116, 17871, 106959, 663526, 4243490, 27856087, 187029655, 1280660596, 8921737864, 63108620169, 452503644985, 3284213633684, 24098433889312, 178583179551488, 1335346240984360
Offset: 0
A223034
Number of 3-vexillary permutations in S_n, that is, permutations whose Stanley symmetric function has at most 3 terms or at most 3 Edelman-Greene tableaux.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 705, 4553, 30930, 216412, 1545469
Offset: 0
- S. Billey and B. Pawlowski, Permutation Patterns, Stanley symmetric functions and generalized Specht modules, arXiv:1304.7870 [math.CO], 2013.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
A224249
Number of permutations in S_n containing exactly 2 increasing subsequences of length 4.
Original entry on oeis.org
0, 0, 0, 0, 4, 63, 665, 5982, 49748, 396642, 3089010, 23745117, 181282899, 1379847138, 10496697584, 79928658289, 609847716251, 4665446254886, 35801131210504, 275638351332190, 2129514056354378, 16509890253429971, 128449405928666831, 1002835093225654416, 7856166360951643384
Offset: 1
Comments