cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A273601 Numbers k such that (11^k - 9^k)/2 is prime.

Original entry on oeis.org

5, 31, 271, 929, 2789, 4153
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 51001, 95780952266636767336259095696501, ...
a(7) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 9^#)/2] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 9^n)/2), print1(n, ", ")))

A141824 Antidiagonals of table A047888 (which counts longest increasing subsequences and pattern avoidances).

Original entry on oeis.org

1, 2, 4, 9, 24, 75, 269, 1095, 5039, 26084, 150356, 952526, 6553011, 48553418, 385693800, 3277413802, 29741002168, 287555932433, 2952769116993, 32079033571080, 367336668735826, 4419518218479215, 55733223965845539, 735448682261126767, 10142738983005750681
Offset: 1

Views

Author

Alford Arnold, Jul 08 2008

Keywords

Comments

Note that:
A000108 avoids string "123"
A005808 avoids string "1234"
A047889 avoids string "12345"
Note also that the left half and central diagonal of A047888 are partial sums of table A047874.

Examples

			We can write A141824(n) = 1 2 4 9 24 ... because A047888 begins
  1;
  1,  1;
  1,  2,  1;
  1,  5,  2,  1;
  1, 14,  6,  2,  1;
etc.
		

Crossrefs

Cf. A000108 (Catalan numbers), A005808, A047889, A047874.

Extensions

a(12)-a(25) from Alois P. Heinz, Apr 10 2012

A245442 Numbers n such that (50^n - 1)/49 is prime.

Original entry on oeis.org

3, 5, 127, 139, 347, 661, 2203, 6521, 210319
Offset: 1

Views

Author

Robert Price, Jul 22 2014

Keywords

Comments

a(9) > 10^5.
All terms are prime.

Crossrefs

Programs

Extensions

a(9)=210319 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A181987 Numbers n such that (39^n - 1)/38 is prime.

Original entry on oeis.org

349, 631, 4493, 16633, 36341
Offset: 1

Views

Author

Robert Price, Apr 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(39^#-1)/38]&]
  • PARI
    is(n)=ispseudoprime((39^n-1)/38) \\ Charles R Greathouse IV, Jun 13 2017

A185073 Numbers n such that (34^n - 1)/33 is prime.

Original entry on oeis.org

13, 1493, 5851, 6379, 125101
Offset: 1

Views

Author

Robert Price, Mar 10 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(34^#-1)/33]&]
  • PARI
    isok(n) = isprime((34^n-1)/33); \\ Michel Marcus, Mar 13 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime((34^n - 1)/33), print1(n, ", "))); \\ Altug Alkan, Mar 13 2016

Extensions

a(5)=125101 corresponds to a probable prime discovered by Paul Bourdelais, Nov 20 2017

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A294722 Numbers k such that (44^k - 1)/43 is prime.

Original entry on oeis.org

5, 31, 167, 100511
Offset: 1

Views

Author

Paul Bourdelais, Nov 07 2017

Keywords

Comments

The number corresponding to a(4) is a probable prime.
These are the indices of base-44 repunit primes, i.e., numbers k such that A002275(k) interpreted as a base-44 number and converted to decimal is prime. - Felix Fröhlich, Nov 08 2017

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
  • PFGW
    ABC2 (44^$a-1)/43 // -f{2*$a}
    a: primes from 2 to 1000000
    

A172413 Positive numbers n such that 11^n + n + 1 is prime.

Original entry on oeis.org

1, 29, 35, 1309, 84379
Offset: 1

Views

Author

Matevz Markovic, Jun 30 2011

Keywords

Comments

11^n + n + 1 for n = 84379 is a probable prime.
There are no further terms up to 100000.

Crossrefs

Programs

  • Mathematica
    Do[ If[PrimeQ[11^m + m + 1 ] , Print[m]], {m, 5000}]
  • PARI
    is(n)=ispseudoprime(11^n+n+1) \\ Charles R Greathouse IV, Jun 13 2017
Previous Showing 11-18 of 18 results.