cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A062974 Numbers k such that omega(k+1) < 2*omega(k), where omega(k) is the number of distinct prime divisors of k.

Original entry on oeis.org

2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Jason Earls, Jul 26 2001

Keywords

Comments

A001221(a(n)+1) < 2*A001221(a(n)).

Crossrefs

Cf. A006049 (subsequence).

Programs

  • Haskell
    import Data.List (findIndices)
    a062974 n = a062974_list !! (n-1)
    a062974_list = map (+ 1) $ findIndices (< 0) $
       zipWith (-) (tail a001221_list) $ map (* 2) a001221_list
    -- Reinhard Zumkeller, Jan 22 2013
  • PARI
    j=[]; for(n=1,200, if(omega(n+1)<2*omega(n),j=concat(j,n))); j
    

A063464 Numbers k such that omega(k) = omega(k+2), where omega(k) is the number of distinct prime divisors of k.

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 11, 12, 17, 18, 20, 22, 23, 24, 25, 26, 27, 29, 33, 34, 36, 38, 41, 44, 46, 47, 48, 50, 52, 54, 55, 56, 59, 63, 71, 72, 74, 75, 79, 80, 81, 85, 86, 91, 92, 93, 94, 96, 98, 101, 104, 106, 107, 115, 116, 117, 122, 125, 130, 133, 134, 137, 138, 141, 142
Offset: 1

Views

Author

Jason Earls, Jul 26 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeNu[#]==PrimeNu[#+2]&] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    j=[]; for(n=1,350, if(omega(n)==omega(n+2),j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (omega(m) == omega(m + 2), write("b063464.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 22 2009

A075044 a(0) = 1; a(n) = the smallest number k such that n numbers from k to k+n-1 have n distinct prime divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 14, 644, 134043, 129963314, 626804494291
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Comments

a(7) <= 45164156742722455667280. - Giorgos Kalogeropoulos, Apr 10 2025

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[Length /@ FactorInteger /@ Range[k, k+n-1] != Table[n, {n}], k++ ]; Print[k], {n, 0, 5}] (* Ryan Propper, Oct 01 2005 *)

Extensions

Corrected and extended by Ryan Propper, Oct 01 2005
Offset corrected and a(6) from Donovan Johnson, Aug 03 2009

A076253 a(n) = the least positive integer solution of the "n-th omega recurrence" omega(k) = omega(k-1) + ... + omega(k-n), if such k exists; = 0 otherwise. (omega(n) denotes the number of distinct prime factors of n.)

Original entry on oeis.org

3, 3, 2310, 746130, 601380780, 89419589469210, 489423552293946270
Offset: 1

Views

Author

Joseph L. Pe, Nov 04 2002

Keywords

Comments

Question: Is a(n) > 0 for all n, i.e. can the n-th omega recurrence be solved for all n?
Note that 601380780 is not squarefree. Using primorials, I easily found candidates up to a(8). - Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 05 2005

Examples

			k=3 is the smallest solution of omega(k)=omega(k-1), so a(1)=3.
k=3 is the smallest solution of omega(k)=omega(k-1)+omega(k-2), so a(2)=3.
k=2310 is the smallest solution of omega(k)=omega(k-1)+omega(k-2)+omega(k-3), so a(3)=2310.
		

Crossrefs

Programs

  • Mathematica
    (*code to find a(4)*) omega[n_] := Length[FactorInteger[n]]; ub = 2*10^6; For[i = 2, i <= ub, i++, a[i] = omega[i]]; start = 5; For[j = start, j <= ub, j++, If[a[j] == a[j - 1] + a[j - 2] + a[j - 3] + a[j - 4], Print[j]]]
  • PARI
    /* find a(5) */ v=[0,0,0,0,0]; s=0;for(i=1,5,v[i]=omega(i);s+=v[I])
    for(i=6,10^10,o=omega(i);if(o==s,print(i);break);s-=v[i%5+1];s+=o;v[i%5+1]=o) \\ Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 05 2005

Extensions

a(5) from Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 05 2005
a(6)-a(7) from Donovan Johnson, Feb 07 2009

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.

A355709 Numbers k such that k and k+1 have the same number of 3-smooth divisors.

Original entry on oeis.org

2, 14, 21, 33, 38, 44, 50, 57, 69, 74, 80, 86, 93, 99, 105, 110, 116, 122, 129, 135, 141, 146, 158, 165, 171, 177, 182, 194, 201, 213, 218, 230, 237, 249, 254, 260, 266, 273, 285, 290, 296, 302, 309, 315, 321, 326, 332, 338, 345, 357, 362, 374, 381, 387, 393, 398
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A072078(k) = A072078(k+1).
This sequence is infinite since it includes all the numbers of the form 3*(2^(2*k+1)-1), with k>=1.

Examples

			2 is a term since A072078(2) = A072078(3) = 2.
		

Crossrefs

Cf. A072078, A355710 (5-smooth analog).

Programs

  • Mathematica
    s[n_] := Times @@ (1 + IntegerExponent[n, {2, 3}]); Select[Range[400], s[#] == s[#+1] &]
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1);
    s1 = s(1); for(k = 2, 400, s2 = s(k); if(s1 == s2, print1(k-1,", ")); s1 = s2);

A293460 a(n) = Sum_{k=1..n} sign(omega(n+1) - omega(n)) (where omega(m) = A001221(m), the number of distinct primes dividing m).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 4, 4, 4
Offset: 0

Views

Author

Rémy Sigrist, Oct 26 2017

Keywords

Comments

The sign function is defined by:
- sign(0) = 0,
- sign(n) = +1 for any n > 0,
- sign(n) = -1 for any n < 0.
a(n) corresponds to the number of integers up to n in A294277 minus the number of integers up to n in A294278.
The first negative value occurs at a(178) = -1.
Will this sequence change sign indefinitely?

Examples

			The following table shows the first terms of the sequence, alongside sign(omega(n+1)-omega(n)), omega(n+1) and omega(n):
n       a(n)    sign    w(n+1)  w(n)
-       ----    ----    ------  ----
0       0
1       1       1       1       0
2       1       0       1       1
3       1       0       1       1
4       1       0       1       1
5       2       1       2       1
6       1       -1      1       2
7       1       0       1       1
8       1       0       1       1
9       2       1       2       1
10      1       -1      1       2
11      2       1       2       1
12      1       -1      1       2
13      2       1       2       1
14      2       0       2       2
15      1       -1      1       2
16      1       0       1       1
17      2       1       2       1
18      1       -1      1       2
19      2       1       2       1
20      2       0       2       2
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Join[{0},Sign[Differences[PrimeNu[Range[90]]]]]] (* Harvey P. Dale, Dec 25 2024 *)
  • PARI
    s = 0; for (n=1, 87, print1 (s ", "); s += sign(omega(n+1)-omega(n)))

Formula

a(0) = 0, and for any n > 0:
- a(A294277(n)) = a(A294277(n)-1) + 1,
- a(A006049(n)) = a(A006049(n)-1),
- a(A294278(n)) = a(A294278(n)-1) - 1.
Also: a(n) = #{ k / A294277(k) <= n } - #{ k / A294278(k) <= n }.

A375287 Square array T(n, k), n > 1 and k >= 1, read by upward antidiagonals, give the smallest number that starts a sequence of exactly k consecutive numbers, each having exactly n distinct prime factors (counted without multiplicity), or -1 if no such number exists.

Original entry on oeis.org

6, 30, 14, 210, 230, 20, 2310, 7314, 644, 33, 30030, 254540, 37960, 1308, 54, 510510, 11243154, 1042404, 134043, 2664, 91, 9699690, 965009045, 323567034, 21871365, 357642, 6850, 323, 223092870, 65893166030, 30989984674, 7933641735, 129963314, 2713332, 10280, 141
Offset: 2

Views

Author

Jean-Marc Rebert, Aug 10 2024

Keywords

Comments

All positive terms are composite.

Examples

			T(2,3) = 20 = 2^2 * 5, because both 21 and 22 have the same omega. Thus, 20 is the starting number of a run of 3 numbers that each have same omega, i.e. 2. No lesser number has this property, so T(2,3) = 20.
Table begins (upper left corner = T(2,1)):
      6       14        20         33 ...
     30      230       644       1308 ...
    210     7314     37960     134043 ...
   2310   254540   1042404   21871365 ...
  30030 11243154 323567034 7933641735 ...
    ...      ...       ...        ...
		

Crossrefs

Cf. A001221, A002110 (col 1), A006049, A006073, A045932-A045938, A064709 (row 2), A185032 (row 3), A185042 (row 4), A384507 (row 5).

Formula

T(n,1) = A002110(n) for n > 1.

Extensions

a(29) corrected by and a(30)-a(37) from Jinyuan Wang, Sep 05 2025
Previous Showing 31-38 of 38 results.