cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 79 results. Next

A369802 Inversion count of the Eytzinger array layout of n elements.

Original entry on oeis.org

0, 0, 1, 1, 4, 6, 7, 7, 14, 20, 25, 29, 32, 34, 35, 35, 50, 64, 77, 89, 100, 110, 119, 127, 134, 140, 145, 149, 152, 154, 155, 155, 186, 216, 245, 273, 300, 326, 351, 375, 398, 420, 441, 461, 480, 498, 515, 531, 546, 560, 573, 585, 596, 606, 615, 623, 630
Offset: 0

Views

Author

DarĂ­o Clavijo, Feb 01 2024

Keywords

Comments

The Eytzinger array layout (A375825) arranges elements so that a binary search can be performed starting at element k=1 and at a given k step to 2*k or 2*k+1 according as the target is smaller or larger than the element at k.
This layout is a permutation of the elements and its inversion count (number of swaps needed to sort by the bubble sort algorithm) is a measure of how much it differs from an ordinary sorted array.

Examples

			For n=5, the Eytzinger array layout is {4, 2, 5, 1, 3} and it contains a(5) = 6 element pairs which are not in ascending order (out of 10 element pairs altogether).
		

Crossrefs

Programs

  • Python
    from sympy.combinatorics.permutations import Permutation
    def a(n):
      def eytzinger(t, k=1, i=0):
        if (k < len(t)):
          i = eytzinger(t, k * 2, i)
          t[k] = i
          i += 1
          i = eytzinger(t, k * 2 + 1, i)
        return i
      t = [0] * (n+1)
      eytzinger(t)
      return Permutation(t[1:]).inversions()
    print([a(n) for n in range(0, 58)])

Formula

a(2^n-1) = A006095(n).
Conjecture: a(n) = (A261692(n)-n)/2.

A006103 Gaussian binomial coefficient [ 2n,n ] for q=3.

Original entry on oeis.org

1, 4, 130, 33880, 75913222, 1506472167928, 267598665689058580, 427028776969176679964080, 6129263888495201102915629695046, 791614563787525746761491781638123230424, 920094266641283414155073889843358388073398779900
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A022167.

Programs

  • Magma
    q:=3; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // G. C. Greubel, Mar 09 2019
    
  • Mathematica
    Table[QBinomial[2n, n, 3], {n, 0, 10}] (* Vladimir Reshetnikov, Sep 12 2016 *)
  • PARI
    q=3; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };
    vector(15, n, n--; a(n)) \\ G. C. Greubel, Mar 09 2019
    
  • Sage
    [gaussian_binomial(2*n,n,3) for n in (0..15)] # G. C. Greubel, Mar 09 2019

Formula

a(n) = Sum_{k=0..n} 3^(k^2)*(A022167(n,k))^2. - Werner Schulte, Mar 09 2019

A006104 Gaussian binomial coefficient [ n,n/2 ] for q=3.

Original entry on oeis.org

1, 1, 4, 13, 130, 1210, 33880, 925771, 75913222, 6174066262, 1506472167928, 366573514642546, 267598665689058580, 195168545232713290660, 427028776969176679964080, 934054234760012359481199283, 6129263888495201102915629695046
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Mathematica
    Table[QBinomial[n,Floor[n/2],3],{n,0,20}] (* Harvey P. Dale, Nov 11 2011 *)

Extensions

More terms from Harvey P. Dale, Nov 11 2011

A006107 Gaussian binomial coefficient [ n,4 ] for q = 4.

Original entry on oeis.org

1, 341, 93093, 24208613, 6221613541, 1594283908581, 408235958349285, 104514759495347685, 26756185103024942565, 6849609413493939400165, 1753501675591663698472421, 448896535558672700374937061, 114917519925881846404167134693
Offset: 4

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=4; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
  • Maple
    seq((4^n-64)*(4^n-16)*(4^n-4)*(4^n-1)/2961100800, n=4..30); # Robert Israel, Feb 01 2018
  • Mathematica
    Table[QBinomial[n, 4, 4], {n, 4, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
  • Sage
    [gaussian_binomial(n,4,4) for n in range(4,14)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^4/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)*(1-256*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..4} (4^(n-i+1)-1)/(4^i-1), by definition. - Vincenzo Librandi, Aug 07 2016
a(n) = (4^n-64)*(4^n-16)*(4^n-4)*(4^n-1)/2961100800. - Robert Israel, Feb 01 2018

A006109 Gaussian binomial coefficient [ n,n/2 ] for q=4.

Original entry on oeis.org

1, 1, 5, 21, 357, 5797, 376805, 24208613, 6221613541, 1594283908581, 1634141006295525, 1673768626404966885, 6857430062381149327845, 28089747579101385828291045, 460250514083576206796548772325, 7540859480106603961931048583270885
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Mathematica
    Table[QBinomial[n, Floor[n/2], 4], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)

A006113 Gaussian binomial coefficient [ n,4 ] for q = 5.

Original entry on oeis.org

1, 781, 508431, 320327931, 200525284806, 125368356709806, 78360229974772306, 48975769621072897306, 30609934249224268600431, 19131218685276848401412931, 11957012900737114492991256681, 7473133215765585192791624069181, 4670708278954101902438990598678556
Offset: 4

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=4; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
  • Maple
    qBinom := proc(n,m,q)
            mul( (1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ;
    end proc:
    A006113 := proc(n)
            qBinom(n,4,5) ;
    end proc:
    seq(A006113(n),n=4..16) ; # R. J. Mathar, Sep 28 2011
  • Mathematica
    Table[QBinomial[n, 4, 5], {n, 4, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
  • Sage
    [gaussian_binomial(n,4,5) for n in range(4,14)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^4/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..4} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 06 2016

A006114 Gaussian binomial coefficient [ 2n,n ] for q=5.

Original entry on oeis.org

1, 6, 806, 2558556, 200525284806, 391901483074853556, 19138263752352528498478556, 23362736428829868448189697999416056, 712977784594148279816735342927316866304884806, 543959438081999965602054955428186322207689611643379103556
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Maple
    with(QDifferenceEquations):
    seq(eval(QSimpComb(QBinomial(2*n,n,q)),q=5), n=0..12); # Robert Israel, Feb 01 2018
  • Mathematica
    Table[QBinomial[2n,n,5],{n,0,10}] (* Harvey P. Dale, Jun 10 2018 *)

A006115 Gaussian binomial coefficient [ n,n/2 ] for q=5.

Original entry on oeis.org

1, 1, 6, 31, 806, 20306, 2558556, 320327931, 200525284806, 125368356709806, 391901483074853556, 1224770494838892134806, 19138263752352528498478556
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Mathematica
    Table[QBinomial[n, Floor[n/2], 5], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)

A130324 A059268^2.

Original entry on oeis.org

1, 3, 4, 7, 12, 16, 15, 28, 48, 64, 31, 60, 112, 192, 256, 63, 124, 240, 448, 768, 1024, 127, 252, 496, 960, 1792, 3072, 4096, 255, 508, 1008, 1984, 3840, 7168, 12288, 16384, 511, 1020, 2032, 4032, 7936, 15360, 28672, 49152, 65536
Offset: 0

Views

Author

Gary W. Adamson, May 24 2007

Keywords

Comments

Row sums = A006095: (1, 7, 35, 155, 651, 2667, ...).

Examples

			First few rows of the triangle:
   1;
   3,   4;
   7,  12,  16;
  15,  28,  48,  64;
  31,  60, 112, 192, 256;
  63, 124, 240, 448, 768, 1024;
  ...
		

Crossrefs

Formula

A059268^2 as an infinite lower triangular matrix, where A059268 = (1; 1,2; 1,2,4; ...).

A130329 A059268 * A130321.

Original entry on oeis.org

1, 5, 2, 21, 10, 4, 85, 42, 20, 8, 341, 170, 84, 40, 16, 1365, 682, 340, 168, 80, 32, 5461, 2730, 1364, 680, 336, 160, 64, 21845, 10922, 5460, 2728, 1360, 672, 320, 128, 87381, 43690, 21844, 10920, 5456, 2720, 1344, 640, 256
Offset: 0

Views

Author

Gary W. Adamson, May 24 2007

Keywords

Comments

Row sums = A006095: (1, 7, 35, 155, 651, 2667, ...).
Left border = A002450: (1, 5, 21, 85, 341, 1365, ...).

Examples

			First few rows of the triangle:
    1;
    5,   2;
   21,  10,  4;
   85,  42, 20,  8;
  341, 170, 84, 40, 16;
  ...
		

Crossrefs

Formula

A059268 * A130321 as infinite lower triangular matrices.
Previous Showing 61-70 of 79 results. Next