cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 2, 2, 7, 4, 3, 3, 15, 8, 5, 4, 4, 31, 16, 9, 6, 5, 5, 63, 32, 17, 10, 7, 6, 6, 127, 64, 33, 18, 11, 8, 7, 7, 255, 128, 65, 34, 19, 12, 9, 8, 8, 511, 256, 129, 66, 35, 20, 13, 10, 9, 9, 1023, 512, 257, 130, 67, 36, 21, 14, 11, 10, 10, 2047, 1024, 513, 258, 131, 68, 37, 22
Offset: 0

Views

Author

Ross La Haye, Feb 23 2004

Keywords

Examples

			{0};
{1,1};
{3,2,2};
{7,4,3,3};
{15,8,5,4,4};
{31,16,9,6,5,5};
{63,32,17,10,7,6,6};
a(5,3) = 34 because 2^5 + (3-1) = 34.
		

Crossrefs

Rows: a(0, k) = A001477(k), a(1, k) = A000027(k+1) etc. etc. Columns: a(n, 0) = A000225(n). a(n, 1) = A000079(n). a(n, 2) = A000051(n). a(n, 3) = A052548(n). a(n, 4) = A062709(n). Diagonals: a(n, n+3) = A052968(n+1). a(n, n+2) = A005126(n). a(n, n+1) = A006127(n). a(n, n) = A052944(n). a(n, n-1) = A083706(n-1). Also note that the sums of the antidiagonals = the partial sums of the main diagonal, i.e., a(n, n).

Programs

  • Mathematica
    Flatten[ Table[ Table[ a[i, n - i], {i, n, 0, -1}], {n, 0, 11}]] (* both from Robert G. Wilson v, Feb 26 2004 *)
    Table[a[n, k], {n, 0, 10}, {k, 0, 10}] // TableForm (* to view the table *)

Formula

For k > 0, a(n, k)= a(n, k-1) + 1.
a(n, k) = 2^n + (k-1).

Extensions

More terms from Robert G. Wilson v, Feb 23 2004

A104795 Triangle T(n,k) = C(n,k)+1 for k

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 5, 7, 5, 1, 2, 6, 11, 11, 6, 1, 2, 7, 16, 21, 16, 7, 1, 2, 8, 22, 36, 36, 22, 8, 1, 2, 9, 29, 57, 71, 57, 29, 9, 1, 2, 10, 37, 85, 127, 127, 85, 37, 10, 1, 2, 11, 46, 121, 211, 253, 211, 121, 46, 11, 1, 2, 12, 56, 166, 331, 463, 463, 331, 166, 56, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, Mar 26 2005

Keywords

Examples

			First few rows of the triangle are:
1;
2, 1;
2, 3, 1;
2, 4, 4, 1;
2, 5, 7, 5, 1;
2, 6, 11, 11, 6, 1;
2, 7, 16, 21, 16, 7, 1;
2, 8, 22, 36, 36, 22, 8, 1;
...
		

Crossrefs

Row sums are in A006127. Cf. A007318.

Extensions

Edited by Ralf Stephan, Apr 05 2009
a(28) = 28 replaced by 2, 8 by Georg Fischer, Apr 09 2022

A131415 (A007318 * A000012) + (A000012 * A007318) - A007318.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 11, 10, 5, 1, 20, 21, 15, 6, 1, 37, 41, 36, 21, 7, 1, 70, 78, 77, 57, 28, 8, 1, 135, 148, 155, 134, 85, 36, 9, 1, 264, 283, 303, 289, 219, 121, 45, 10, 1, 521, 547, 586, 592, 508, 340, 166, 55, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 08 2007

Keywords

Comments

Left column = A006127: (1, 3, 6, 11, 20, 37,...). Row sums = A047859: (1, 4, 11, 27, 63,...).

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 4, 1;
11, 10, 5, 1;
20, 21, 15, 6, 1;
37, 41, 36, 21, 7, 1;
...
		

Crossrefs

Formula

(A007318 * A000012) + (A000012 * A007318) - A007318 as infinite lower triangular matrices.

A137810 a(n) = 2^(2^n+n) - 1.

Original entry on oeis.org

1, 7, 63, 2047, 1048575, 137438953471, 1180591620717411303423, 43556142965880123323311949751266331066367, 29642774844752946028434172162224104410437116074403984394101141506025761187823615
Offset: 0

Views

Author

Ant King, Feb 12 2008

Keywords

Comments

An integer is simultaneously a Mersenne number and a Woodall number if and only if it is a member of this sequence. Hence this sequence is the intersection of A000225 and A003261.

Examples

			The fourth integer which is both a Mersenne number and a Woodall number is 2047. Hence a(3)=2047 (as the offset is zero).
		

Crossrefs

Programs

  • Mathematica
    2^(2^#+#)-1 &/@Range[0,8]

Formula

a(n) = 2^(2^n+n)-1 = A000225(2^n+n) = A003261(2^n).

A201824 G.f.: Sum_{n>=0} log( 1/sqrt(1-2^n*x) )^n / n!.

Original entry on oeis.org

1, 1, 3, 20, 330, 15504, 2324784, 1198774720, 2214919483920, 14955617450039552, 372282884729800002816, 34307640086657221926620160, 11737947382912650038702322439680, 14950677150224267346380689021913026560, 71100479076279984636914230616119201295462400
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 20*x^3 + 330*x^4 + 15504*x^5 +...
where
A(x) = 1 + log(1/sqrt(1-2*x)) + log(1/sqrt(1-4*x))^2/2! + log(1/sqrt(1-8*x))^3/3! + log(1/sqrt(1-16*x))^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=binomial(2^(n-1)+n-1, n)}
    
  • PARI
    {a(n)=polcoef(sum(m=0,n+1,log(1/sqrt(1-2^m*x +x^2*O(x^n)))^m/m!),n)}

Formula

a(n) = binomial(2^(n-1) + n - 1, n).
a(n) = A006127(n-1)*A060690(n-1)/n for n>0. - Hugo Pfoertner, Jul 19 2024

A340228 a(n) is the sum of the lengths of all the segments used to draw a rectangle of height 2^(n-1) and width n divided into 2^(n-1) rectangles of unit height, in turn, divided into rectangles of unit height and lengths corresponding to the parts of the compositions of n.

Original entry on oeis.org

4, 11, 27, 64, 149, 342, 775, 1736, 3849, 8458, 18443, 39948, 86029, 184334, 393231, 835600, 1769489, 3735570, 7864339, 16515092, 34603029, 72351766, 150994967, 314572824, 654311449, 1358954522, 2818572315, 5838471196, 12079595549, 24964497438, 51539607583, 106300440608
Offset: 1

Views

Author

Stefano Spezia, Jan 01 2021

Keywords

Examples

			Illustrations for n = 1..4:
      _           _ _
     |_|         |_ _|
                 |_|_|
  a(1) = 4     a(2) = 11
    _ _ _       _ _ _ _
   |_ _ _|     |_ _ _ _|
   |_ _|_|     |_ _ _|_|
   |_|_ _|     |_|_ _ _|
   |_|_|_|     |_ _|_ _|
               |_ _|_|_|
               |_|_ _|_|
               |_|_|_ _|
               |_|_|_|_|
  a(3) = 27    a(4) = 64
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{4,11,27,64},32]

Formula

O.g.f.: x*(4 - 13*x + 13*x^2 - 3*x^3)/(1 - 3*x + 2*x^2)^2.
E.g.f.: (exp(2*x)*(3 + 6*x) + 4*x*exp(x) - 3)/4.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n > 4.
a(n) = n + 3*(n + 1)*2^(n-2).
a(n) = A001792(n) + A188626(n).
a(n) = A045623(n) + A215149(n).
a(n) = A006127(n) + A053220(n).
Previous Showing 51-56 of 56 results.