cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A128100 Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045). Column 0 yields the Fibonacci numbers (A000045); the other columns yield convolved Fibonacci numbers (A001629, A001628, A001872, A001873, etc.). Sum_{k=0..floor(n/2)} k*T(n,k) = A073371(n-2).
Triangle T(n,k), with zeros omitted, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 24 2012
Riordan array (1/(1-x-x^2), x^2/(1-x-x^2)), with zeros omitted. - Philippe Deléham, Feb 06 2012
Diagonal sums are A000073(n+2) (tribonacci numbers). - Philippe Deléham, Feb 16 2014
Number of induced subgraphs of the Fibonacci cube Gamma(n-1) that are isomorphic to the hypercube Q_k. Example: row n=4 is 5, 5, 1; indeed, the Fibonacci cube Gamma(3) is a square with an additional pendant edge attached to one of its vertices; it has 5 vertices (i.e., Q_0's), 5 edges (i.e., Q_1's) and 1 square (i.e., Q_2). - Emeric Deutsch, Aug 12 2014
Row n gives the coefficients of the polynomial p(n,x) defined as the numerator of the rational function given by f(n,x) = 1 + (x + 1)/f(n-1,x), where f(x,0) = 1. Conjecture: for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2). - Clark Kimberling, Oct 22 2014

Examples

			Triangle starts:
   1;
   1;
   2,  1;
   3,  2;
   5,  5,  1;
   8, 10,  3;
  13, 20,  9,  1;
  21, 38, 22,  4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
   1;
   1,  0;
   2,  1,  0;
   3,  2,  0,  0;
   5,  5,  1,  0,  0;
   8, 10,  3,  0,  0,  0;
  13, 20,  9,  1,  0,  0,  0;
  21, 38, 22,  4,  0,  0,  0,  0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
  1
  2 +  x
  3 + 2x
  5 + 5x + x^2. (End)
		

Crossrefs

Programs

  • Maple
    G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
    Numerator[Table[Factor[p[x, n]], {n, 1, 20}]]  (* Clark Kimberling, Oct 22 2014 *)

Formula

G.f.: 1/(1-z-(1+t)z^2).
Sum_{k=0..n} T(n,k)*x^k = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, and -13, respectively. - Philippe Deléham, Jan 24 2012
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1). - Philippe Deléham, Jan 24 2012
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x/((2*k+2+ x*(1+y))*x + 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = Sum_{i=k..floor(n/2)} binomial(n-i,i)*binomial(i,k). See Corollary 3.3 in the Klavzar et al. link. - Emeric Deutsch, Aug 12 2014

A172349 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=4.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 9, 45, 9, 1, 1, 29, 261, 261, 29, 1, 1, 65, 1885, 3393, 1885, 65, 1, 1, 181, 11765, 68237, 68237, 11765, 181, 1, 1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1, 1, 1165, 513765, 18598293, 134321005, 134321005
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Feb 01 2010

Keywords

Comments

Start from the generalized Fibonacci sequence A006131 and its partial products c(n) = 1, 1, 1, 5, 45, 1305, 84825, 15353325, 6770816325, 7888001018625... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 3, 12, 65, 582, 7295, 160368, 5579485, 306868458, 26280601275,...

Examples

			1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 9, 45, 9, 1;
1, 29, 261, 261, 29, 1;
1, 65, 1885, 3393, 1885, 65, 1;
1, 181, 11765, 68237, 68237, 11765, 181, 1;
1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1;
1, 1165, 513765, 18598293, 134321005, 134321005, 18598293, 513765, 1165, 1;
1, 2929, 3412285, 300963537, 6052711133, 13566421505, 6052711133, 300963537, 3412285, 2929, 1;
		

Crossrefs

Cf. A010048 (m=1), A015109 (m=2), A172347 (m=3), A172350 (m=5).

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]

A344236 Number of n-step walks from a universal vertex to the other on the diamond graph.

Original entry on oeis.org

0, 1, 2, 5, 14, 33, 90, 221, 582, 1465, 3794, 9653, 24830, 63441, 162762, 416525, 1067574, 2733673, 7003970, 17938661, 45954542, 117709185, 301527354, 772364093, 1978473510, 5067929881, 12981823922, 33253543445, 85180839134, 218195012913, 558918369450
Offset: 0

Views

Author

M. Eren Kesim, May 12 2021

Keywords

Comments

a(n) is the number of n-step walks from vertex A to vertex C on the graph below.
B--C
| /|
|/ |
A--D

Examples

			Let A, B, C and D be the vertices of the diamond graph, where A and C are the universal vertices. Then, a(3) = 5 walks from A to C are: (A, B, A, C), (A, C, A, C), (A, C, B, C), (A, C, D, C), and (A, D, A, C).
		

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; if n <= 2 then n; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
  • Mathematica
    LinearRecurrence[{0, 5, 4}, {0, 1, 2}, 30]
  • PARI
    my(p=Mod('x,'x^2-'x-4)); a(n) = (vecsum(Vec(lift(p^n))) + n%2) >> 1; \\ Kevin Ryde, May 13 2021
  • Python
    def A344236_list(n):
        list = [0, 1, 2] + [0] * (n - 3)
        for i in range(3, n):
            list[i] = 5 * list[i - 2] + 4 * list[i - 3]
        return list
    print(A344236_list(31)) # M. Eren Kesim, Jul 19 2021
    

Formula

a(n) = a(n-1) + 4*a(n-2) + (-1)^n for n > 1.
a(n) = A344261(n-1) + 2*a(n-2) + 2*A344261(n-2) for n > 1.
a(n) = A344261(n) - (-1)^n.
a(n) = A006131(n) - A344261(n).
a(n) = (A006131(n) - (-1)^n)/2.
a(n) = ((sqrt(17)-1)/(4*sqrt(17)))*((1-sqrt(17))/2)^n + ((sqrt(17)+1)/(4*sqrt(17)))*((1+sqrt(17))/2)^n - (1/2)*(-1)^n.
G.f.: (2*x^2 + x)/(-4*x^3 - 5*x^2 + 1).
a(n) = 5*a(n-2) + 4*a(n-3) for n > 2. - Stefano Spezia, May 13 2021

A344261 Number of n-step walks from one of the vertices with degree 3 to itself on the four-vertex diamond graph.

Original entry on oeis.org

1, 0, 3, 4, 15, 32, 91, 220, 583, 1464, 3795, 9652, 24831, 63440, 162763, 416524, 1067575, 2733672, 7003971, 17938660, 45954543, 117709184, 301527355, 772364092, 1978473511, 5067929880, 12981823923, 33253543444, 85180839135, 218195012912, 558918369451
Offset: 0

Views

Author

M. Eren Kesim, May 13 2021

Keywords

Comments

a(n) is the number of n-step walks from vertex A to itself on the graph below.
B--C
| /|
|/ |
A--D

Examples

			Let A, B, C and D be the vertices of the four-vertex diamond graph, where A and C are the vertices with degree 3. Then, a(3) = 4 walks from A to itself are: (A, B, C, A), (A, C, B, A), (A, C, D, A) and (A, D, C, A).
		

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 1; elif n = 1 then 0; elif n = 2 then 3; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
  • Mathematica
    LinearRecurrence[{0, 5, 4}, {1, 0, 3}, 30] (* Amiram Eldar, May 13 2021 *)
  • Python
    def A344261_list(n):
        list = [1, 0, 3] + [0] * (n - 3)
        for i in range(3, n):
            list[i] = 5 * list[i - 2] + 4 * list[i - 3]
        return list
    print(A344261_list(31)) # M. Eren Kesim, Jul 19 2021

Formula

a(n) = a(n-1) + 4*a(n-2) - (-1)^n for n > 1.
a(n) = 5*a(n-2) + 4*a(n-3) for n > 2.
a(n) = A344236(n-1) + 2*a(n-2) + 2*A344236(n-2) for n > 1.
a(n) = A344236(n) + (-1)^n.
a(n) = A006131(n) - A344236(n).
a(n) = (A006131(n) + (-1)^n)/2.
a(n) = ((sqrt(17)-1)/(4*sqrt(17)))*((1-sqrt(17))/2)^n + ((sqrt(17)+1)/(4*sqrt(17)))*((1+sqrt(17))/2)^n + (1/2)*(-1)^n.
G.f.: (2*x^2 - 1)/(4*x^3 + 5*x^2 - 1).

A103280 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1];
Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,2] is equivalent to the recursion a(1) = 1, a(2) = N+2, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
0
1
N + 2
N^2 + 2*N + 6
N^3 + 2*N^2 + 8*N + 16
N^4 + 2*N^3 + 10*N^2 + 24*N + 44
N^5 + 2*N^4 + 12*N^3 + 32*N^2 + 76*N + 120
N^6 + 2*N^5 + 14*N^4 + 40*N^3 + 112*N^2 + 232*N + 328
N^7 + 2*N^6 + 16*N^5 + 48*N^4 + 152*N^3 + 368*N^2 + 704*N + 896
N^8 + 2*N^7 + 18*N^6 + 56*N^5 + 196*N^4 + 528*N^3 + 1200*N^2 + 2112*N + 2448
etc.

Examples

			Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
		

Crossrefs

Cf. A103279 (for (M^n)[1, 1]), A002605 (for N=0), A000244 (for N=1), A007070 (for N=2), A002450 (for N=3), A030192 (for N=4), A152268 (for N=5), A006131 (for N=-1), A000400 (bisection for N=-2), A015443 (for N=-3), A083102 (for N=-4).

Programs

  • PARI
    T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2)))
    for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=N+2, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).

A176738 Expansion of 1 / ((1+x)*(1-x-4*x^2)). (5,4)-Padovan sequence.

Original entry on oeis.org

1, 0, 5, 4, 25, 40, 141, 300, 865, 2064, 5525, 13780, 35881, 91000, 234525, 598524, 1536625, 3930720, 10077221, 25800100, 66108985, 169309384, 433745325, 1110982860, 2845964161, 7289895600, 18673752245, 47833334644, 122528343625, 313861682200, 803975056701
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

See A000931 (Padovan), and the W. Lang link given there.

Crossrefs

Cf. A176737 ((4,3)-Padovan).

Programs

  • Mathematica
    LinearRecurrence[{0,5,4},{1,0,5},40] (* Harvey P. Dale, May 27 2016 *)
    f[n_] := Simplify[((-1)^(1 +n) + (2^(-1 -n)*((1 + Sqrt[17])^n*(-5 +3Sqrt[17]) + (1 -Sqrt[17])^n*(5 + 3Sqrt[17])))/Sqrt[17])/2]; Array[f, 31, 0] (* or *)
    CoefficientList[Series[1/(1 -5x^2 -4x^3), {x, 0, 30}], x] (* or *)
    RecurrenceTable[{a[n] == 5 a[n - 2] + 4 a[n - 3], a[0] == 1, a[1] == 0, a[2] == 5}, a, {n, 30}] (* Robert G. Wilson v, Dec 25 2017 *)
  • PARI
    Vec(1 / ((1 + x)*(1 - x - 4*x^2)) + O(x^40)) \\ Colin Barker, Dec 25 2017

Formula

O.g.f.: 1/((1-x-4*x^2)*(1+x)) = ((3-4*x)/(1-x-4*x^2) -1/(1+x))/2.
a(n) = (3*b(n) - 4*b(n-1) - (-1)^n)/2, n>=0, with b(n):=A006131(n) ((1,4)-Fibonacci), b(-1):=0.
From Colin Barker, Dec 25 2017: (Start)
a(n) = ((-1)^(1+n) + (2^(-1-n)*((1+sqrt(17))^n*(-5+3*sqrt(17)) + (1-sqrt(17))^n*(5+3*sqrt(17)))) / sqrt(17)) / 2.
a(n) = 5*a(n-2) + 4*a(n-3) for n>2.
(End)

A189604 Number of n X 3 array permutations with each element not moving, or moving one space E, S or NW.

Original entry on oeis.org

1, 6, 20, 72, 256, 912, 3248, 11568, 41200, 146736, 522608, 1861296, 6629104, 23609904, 84087920, 299483568, 1066626544, 3798846768, 13529793392, 48187073712, 171620807920, 611236571184, 2176951329392, 7753327130544
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2011

Keywords

Comments

Column 3 of A189610.
Binomial transform of A006131 starting (1, 5, 9, 29, 65, ...). - Gary W. Adamson, Feb 19 2014

Examples

			Some solutions for 4 X 3:
.
   4  5  1    0  5  1    0  1  2    0  1  2
   0  3  2    7  4  2    3  4  5    3  4  5
   6  7  8    3  6  8    6 11  8   10  7  8
   9 10 11    9 10 11    9  7 10    6  9 11
.
   4  0  1    0  1  2    4  1  2
   7  3  2    3  8  5    0  3  5
  10 11  5    6  4  7    6  7  8
   6  9  8    9 10 11    9 10 11
		

Crossrefs

Cf. A006131.

Programs

  • Mathematica
    a[n_] := Sum[Sum[4^j Binomial[k-j+1, j], {j, 0, Quotient[k+1, 2]}]* Binomial[n-1, k], {k, 0, n-1}];
    a /@ Range[1, 24] (* Jean-François Alcover, Sep 24 2019, after Gary W. Adamson *)

Formula

Empirical: a(n) = 3*a(n-1) + 2*a(n-2).
G.f.: (x+3*x^2)/(1-3*x-2*x^2). - Vladimir Kruchinin, May 13 2011

A231730 Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^(n) which is the numerator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = x + 1/2.

Original entry on oeis.org

1, 2, 5, 4, 4, 9, 22, 12, 8, 29, 56, 72, 32, 16, 65, 202, 232, 208, 80, 32, 181, 556, 924, 800, 560, 192, 64, 441, 1726, 2964, 3480, 2480, 1440, 448, 128, 1165, 4832, 10112, 12608, 11680, 7168, 3584, 1024, 256, 2929, 14066, 31632, 46752, 46816, 36288, 19712
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2013

Keywords

Comments

Sum of numbers in row n: A015521(n). Left edge: A006131. Right edge: powers of 2

Examples

			First 3 rows:
1 .... 2
5 .... 4 .... 4
9 .... 22 ... 12 ... 8
First 3 polynomials:  1 + 2*x, 5 + 4*x + 4*x^2, 9 + 22*x + 12*x^2 + 8*x^3.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = Table[x + 1/2, {k, 0, n}];
    b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
    p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];
    u = Table[p[x, n], {n, 1, 10}]
    v = CoefficientList[u, x]; Flatten[v]

A231774 Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^(n) which is the numerator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = (x + 1)/(x + 2).

Original entry on oeis.org

2, 1, 5, 6, 2, 9, 19, 13, 3, 29, 72, 69, 30, 5, 65, 213, 278, 182, 60, 8, 181, 682, 1084, 928, 451, 118, 13, 441, 1975, 3795, 4065, 2625, 1023, 223, 21, 1165, 5868, 13015, 16590, 13290, 6852, 2221, 414, 34, 2929, 16697, 42404, 63020, 60435, 38799, 16682
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2013

Keywords

Comments

Sum of numbers in row n: A002534(n). Left edge: A006131. Right edge: A000045 (Fibonacci numbers).

Examples

			First 3 rows:
2 ... 1
5 ... 6 .... 2
9 ... 19 ... 13 ... 3
First 3 polynomials:  2 + x, 5 + 6*x + 2*x^2, 9 + 19*x + 13*x^2 + 3*x^3.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = Table[(x + 1)/(x + 2), {k, 0, n}];
    b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
    p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];
    u = Table[p[x, n], {n, 1, 10}]
    v = CoefficientList[u, x]; Flatten[v]
Previous Showing 31-40 of 46 results. Next