A109447
Binomial coefficients C(n,k) with n-k odd, read by rows.
Original entry on oeis.org
1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1
Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1, 3;
4, 4;
1, 10, 5;
6, 20, 6;
1, 21, 35, 7;
8, 56, 56, 8;
1, 36, 126, 84, 9;
10, 120, 252, 120, 10;
-
T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20); # Alois P. Heinz, Feb 07 2014
-
Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
A128100
Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0
Triangle starts:
1;
1;
2, 1;
3, 2;
5, 5, 1;
8, 10, 3;
13, 20, 9, 1;
21, 38, 22, 4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 2, 0, 0;
5, 5, 1, 0, 0;
8, 10, 3, 0, 0, 0;
13, 20, 9, 1, 0, 0, 0;
21, 38, 22, 4, 0, 0, 0, 0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
1
2 + x
3 + 2x
5 + 5x + x^2. (End)
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH: Commun. Math. Comput. Chem, 68 (2012) 3-30. See Eq. (9). - From _N. J. A. Sloane_, Dec 23 2012
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, preprint.
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, Acta Appl. Math. 117, 2012, 93-105. - _Emeric Deutsch_, Aug 12 2014
-
G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
-
p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
Numerator[Table[Factor[p[x, n]], {n, 1, 20}]] (* Clark Kimberling, Oct 22 2014 *)
A172349
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=4.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 9, 45, 9, 1, 1, 29, 261, 261, 29, 1, 1, 65, 1885, 3393, 1885, 65, 1, 1, 181, 11765, 68237, 68237, 11765, 181, 1, 1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1, 1, 1165, 513765, 18598293, 134321005, 134321005
Offset: 0
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 9, 45, 9, 1;
1, 29, 261, 261, 29, 1;
1, 65, 1885, 3393, 1885, 65, 1;
1, 181, 11765, 68237, 68237, 11765, 181, 1;
1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1;
1, 1165, 513765, 18598293, 134321005, 134321005, 18598293, 513765, 1165, 1;
1, 2929, 3412285, 300963537, 6052711133, 13566421505, 6052711133, 300963537, 3412285, 2929, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
A344236
Number of n-step walks from a universal vertex to the other on the diamond graph.
Original entry on oeis.org
0, 1, 2, 5, 14, 33, 90, 221, 582, 1465, 3794, 9653, 24830, 63441, 162762, 416525, 1067574, 2733673, 7003970, 17938661, 45954542, 117709185, 301527354, 772364093, 1978473510, 5067929881, 12981823922, 33253543445, 85180839134, 218195012913, 558918369450
Offset: 0
Let A, B, C and D be the vertices of the diamond graph, where A and C are the universal vertices. Then, a(3) = 5 walks from A to C are: (A, B, A, C), (A, C, A, C), (A, C, B, C), (A, C, D, C), and (A, D, A, C).
-
f := proc(n) option remember; if n <= 2 then n; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
-
LinearRecurrence[{0, 5, 4}, {0, 1, 2}, 30]
-
my(p=Mod('x,'x^2-'x-4)); a(n) = (vecsum(Vec(lift(p^n))) + n%2) >> 1; \\ Kevin Ryde, May 13 2021
-
def A344236_list(n):
list = [0, 1, 2] + [0] * (n - 3)
for i in range(3, n):
list[i] = 5 * list[i - 2] + 4 * list[i - 3]
return list
print(A344236_list(31)) # M. Eren Kesim, Jul 19 2021
A344261
Number of n-step walks from one of the vertices with degree 3 to itself on the four-vertex diamond graph.
Original entry on oeis.org
1, 0, 3, 4, 15, 32, 91, 220, 583, 1464, 3795, 9652, 24831, 63440, 162763, 416524, 1067575, 2733672, 7003971, 17938660, 45954543, 117709184, 301527355, 772364092, 1978473511, 5067929880, 12981823923, 33253543444, 85180839135, 218195012912, 558918369451
Offset: 0
Let A, B, C and D be the vertices of the four-vertex diamond graph, where A and C are the vertices with degree 3. Then, a(3) = 4 walks from A to itself are: (A, B, C, A), (A, C, B, A), (A, C, D, A) and (A, D, C, A).
-
f := proc(n) option remember; if n = 0 then 1; elif n = 1 then 0; elif n = 2 then 3; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
-
LinearRecurrence[{0, 5, 4}, {1, 0, 3}, 30] (* Amiram Eldar, May 13 2021 *)
-
def A344261_list(n):
list = [1, 0, 3] + [0] * (n - 3)
for i in range(3, n):
list[i] = 5 * list[i - 2] + 4 * list[i - 3]
return list
print(A344261_list(31)) # M. Eren Kesim, Jul 19 2021
A103280
Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0
Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005
Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
Cf.
A103279 (for (M^n)[1, 1]),
A002605 (for N=0),
A000244 (for N=1),
A007070 (for N=2),
A002450 (for N=3),
A030192 (for N=4),
A152268 (for N=5),
A006131 (for N=-1),
A000400 (bisection for N=-2),
A015443 (for N=-3),
A083102 (for N=-4).
-
T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2)))
for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())
A176738
Expansion of 1 / ((1+x)*(1-x-4*x^2)). (5,4)-Padovan sequence.
Original entry on oeis.org
1, 0, 5, 4, 25, 40, 141, 300, 865, 2064, 5525, 13780, 35881, 91000, 234525, 598524, 1536625, 3930720, 10077221, 25800100, 66108985, 169309384, 433745325, 1110982860, 2845964161, 7289895600, 18673752245, 47833334644, 122528343625, 313861682200, 803975056701
Offset: 0
-
LinearRecurrence[{0,5,4},{1,0,5},40] (* Harvey P. Dale, May 27 2016 *)
f[n_] := Simplify[((-1)^(1 +n) + (2^(-1 -n)*((1 + Sqrt[17])^n*(-5 +3Sqrt[17]) + (1 -Sqrt[17])^n*(5 + 3Sqrt[17])))/Sqrt[17])/2]; Array[f, 31, 0] (* or *)
CoefficientList[Series[1/(1 -5x^2 -4x^3), {x, 0, 30}], x] (* or *)
RecurrenceTable[{a[n] == 5 a[n - 2] + 4 a[n - 3], a[0] == 1, a[1] == 0, a[2] == 5}, a, {n, 30}] (* Robert G. Wilson v, Dec 25 2017 *)
-
Vec(1 / ((1 + x)*(1 - x - 4*x^2)) + O(x^40)) \\ Colin Barker, Dec 25 2017
A189604
Number of n X 3 array permutations with each element not moving, or moving one space E, S or NW.
Original entry on oeis.org
1, 6, 20, 72, 256, 912, 3248, 11568, 41200, 146736, 522608, 1861296, 6629104, 23609904, 84087920, 299483568, 1066626544, 3798846768, 13529793392, 48187073712, 171620807920, 611236571184, 2176951329392, 7753327130544
Offset: 1
Some solutions for 4 X 3:
.
4 5 1 0 5 1 0 1 2 0 1 2
0 3 2 7 4 2 3 4 5 3 4 5
6 7 8 3 6 8 6 11 8 10 7 8
9 10 11 9 10 11 9 7 10 6 9 11
.
4 0 1 0 1 2 4 1 2
7 3 2 3 8 5 0 3 5
10 11 5 6 4 7 6 7 8
6 9 8 9 10 11 9 10 11
-
a[n_] := Sum[Sum[4^j Binomial[k-j+1, j], {j, 0, Quotient[k+1, 2]}]* Binomial[n-1, k], {k, 0, n-1}];
a /@ Range[1, 24] (* Jean-François Alcover, Sep 24 2019, after Gary W. Adamson *)
A231730
Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^(n) which is the numerator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = x + 1/2.
Original entry on oeis.org
1, 2, 5, 4, 4, 9, 22, 12, 8, 29, 56, 72, 32, 16, 65, 202, 232, 208, 80, 32, 181, 556, 924, 800, 560, 192, 64, 441, 1726, 2964, 3480, 2480, 1440, 448, 128, 1165, 4832, 10112, 12608, 11680, 7168, 3584, 1024, 256, 2929, 14066, 31632, 46752, 46816, 36288, 19712
Offset: 1
First 3 rows:
1 .... 2
5 .... 4 .... 4
9 .... 22 ... 12 ... 8
First 3 polynomials: 1 + 2*x, 5 + 4*x + 4*x^2, 9 + 22*x + 12*x^2 + 8*x^3.
-
t[n_] := t[n] = Table[x + 1/2, {k, 0, n}];
b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];
u = Table[p[x, n], {n, 1, 10}]
v = CoefficientList[u, x]; Flatten[v]
A231774
Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^(n) which is the numerator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = (x + 1)/(x + 2).
Original entry on oeis.org
2, 1, 5, 6, 2, 9, 19, 13, 3, 29, 72, 69, 30, 5, 65, 213, 278, 182, 60, 8, 181, 682, 1084, 928, 451, 118, 13, 441, 1975, 3795, 4065, 2625, 1023, 223, 21, 1165, 5868, 13015, 16590, 13290, 6852, 2221, 414, 34, 2929, 16697, 42404, 63020, 60435, 38799, 16682
Offset: 1
First 3 rows:
2 ... 1
5 ... 6 .... 2
9 ... 19 ... 13 ... 3
First 3 polynomials: 2 + x, 5 + 6*x + 2*x^2, 9 + 19*x + 13*x^2 + 3*x^3.
-
t[n_] := t[n] = Table[(x + 1)/(x + 2), {k, 0, n}];
b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];
u = Table[p[x, n], {n, 1, 10}]
v = CoefficientList[u, x]; Flatten[v]
Comments