A357486
Heinz numbers of integer partitions with the same length as alternating sum.
Original entry on oeis.org
1, 2, 10, 20, 21, 42, 45, 55, 88, 91, 105, 110, 125, 156, 176, 182, 187, 198, 231, 245, 247, 312, 340, 351, 374, 390, 391, 396, 429, 494, 532, 544, 550, 551, 605, 663, 680, 702, 713, 714, 765, 780, 782, 845, 891, 910, 912, 969, 975, 1012, 1064, 1073, 1078
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
10: {1,3}
20: {1,1,3}
21: {2,4}
42: {1,2,4}
45: {2,2,3}
55: {3,5}
88: {1,1,1,5}
91: {4,6}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
156: {1,1,2,6}
176: {1,1,1,1,5}
For product instead of length we have new, counted by
A004526.
These partitions are counted by
A357189.
A000712 up to 0's counts partitions, sum = twice alt sum, rank
A349159.
A001055 counts partitions with product equal to sum, ranked by
A301987.
A006330 up to 0's counts partitions, sum = twice rev-alt sum, rank
A349160.
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[100],PrimeOmega[#]==ats[Reverse[primeMS[#]]]&]
A304620
Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 15, 22, 34, 48, 70, 97, 137, 186, 255, 341, 459, 605, 800, 1042, 1359, 1751, 2256, 2879, 3672, 4645, 5869, 7367, 9234, 11508, 14319, 17730, 21916, 26975, 33143, 40570, 49575, 60376, 73402, 88974, 107666, 129933, 156546, 188148, 225767, 270300, 323115, 385453
Offset: 0
The version for even instead of odd greatest part is
A306145.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A000070 counts partitions with alternating sum 1.
A067661 counts strict partitions of even length.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000097,
A006330,
A027193,
A030229,
A067659,
A236559,
A236914,
A239829,
A239830,
A318156,
A338907,
A344611.
-
nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k)/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 + EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 26 2021 *)
A349159
Numbers whose sum of prime indices is twice their alternating sum.
Original entry on oeis.org
1, 12, 63, 66, 112, 190, 255, 325, 408, 434, 468, 609, 805, 832, 931, 946, 1160, 1242, 1353, 1380, 1534, 1539, 1900, 2035, 2067, 2208, 2296, 2387, 2414, 2736, 3055, 3108, 3154, 3330, 3417, 3509, 3913, 4185, 4340, 4503, 4646, 4650, 4664, 4864, 5185, 5684, 5863
Offset: 1
The terms and their prime indices begin:
1: ()
12: (2,1,1)
63: (4,2,2)
66: (5,2,1)
112: (4,1,1,1,1)
190: (8,3,1)
255: (7,3,2)
325: (6,3,3)
408: (7,2,1,1,1)
434: (11,4,1)
468: (6,2,2,1,1)
609: (10,4,2)
805: (9,4,3)
832: (6,1,1,1,1,1,1)
931: (8,4,4)
946: (14,5,1)
1160: (10,3,1,1,1)
These partitions are counted by
A000712 up to 0's.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >= 0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000070,
A000290,
A001700,
A028260,
A045931,
A120452,
A195017,
A241638,
A257991,
A257992,
A325698,
A345958,
A349155.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==2*ats[primeMS[#]]&]
A349160
Numbers whose sum of prime indices is twice their reverse-alternating sum.
Original entry on oeis.org
1, 10, 12, 39, 63, 66, 88, 112, 115, 190, 228, 255, 259, 306, 325, 408, 434, 468, 517, 544, 609, 620, 783, 793, 805, 832, 870, 931, 946, 1150, 1160, 1204, 1241, 1242, 1353, 1380, 1392, 1534, 1539, 1656, 1691, 1722, 1845, 1900, 2035, 2067, 2208, 2296, 2369
Offset: 1
The terms and their prime indices begin:
1: ()
10: (3,1)
12: (2,1,1)
39: (6,2)
63: (4,2,2)
66: (5,2,1)
88: (5,1,1,1)
112: (4,1,1,1,1)
115: (9,3)
190: (8,3,1)
228: (8,2,1,1)
255: (7,3,2)
259: (12,4)
306: (7,2,2,1)
325: (6,3,3)
408: (7,2,1,1,1)
434: (11,4,1)
468: (6,2,2,1,1)
These partitions are counted by
A006330 up to 0's.
The negative reverse version is
A348617.
The non-reverse version is
A349159.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000984,
A001700,
A028260,
A066207,
A120452,
A195017,
A257991,
A257992,
A344607,
A344609,
A345958,
A349155.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==2*sats[primeMS[#]]&]
A306145
Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k+1) / Product_{j=1..2*k+1} (1 - x^j).
Original entry on oeis.org
0, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 135, 187, 253, 343, 456, 607, 797, 1045, 1355, 1755, 2252, 2884, 3666, 4651, 5863, 7375, 9226, 11517, 14310, 17741, 21904, 26988, 33130, 40586, 49558, 60394, 73383, 88996, 107642, 129958, 156519, 188178, 225734, 270335, 323078, 385494
Offset: 0
The ordered version appears to be
A087447 modulo initial terms.
The version for odd instead of even-length partitions is
A304620.
The case of strict partitions is
A318156.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000070,
A000097,
A006330,
A030229,
A067659,
A236559,
A236914,
A239829,
A239830,
A338907,
A344611.
-
nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k + 1)/Product[(1 - x^j), {j, 1, 2 k + 1}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 - EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 23 2021 *)
A300787
Number of integer partitions of n in which the even parts appear as often at even positions as at odd positions.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 8, 12, 15, 21, 27, 38, 47, 63, 79, 106, 130, 170, 209, 272, 330, 422, 512, 653, 784, 986, 1183, 1482, 1765, 2191, 2604, 3218, 3804, 4666, 5504, 6726, 7898, 9592, 11240, 13602, 15880, 19122, 22277, 26733, 31048, 37102, 43003, 51232, 59220
Offset: 0
The a(7) = 8 partitions: (7), (511), (421), (331), (322), (31111), (22111), (1111111). Missing are: (61), (52), (43), (4111), (3211), (2221), (211111).
Cf.
A000898,
A001405,
A026010,
A045931,
A058696,
A063886,
A097613,
A130780,
A171966,
A239241,
A300788,
A300789.
-
cobal[y_]:=Sum[(-1)^x,{x,Join@@Position[y,_?EvenQ]}];
Table[Length[Select[IntegerPartitions[n],cobal[#]===0&]],{n,0,50}]
A349155
Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.
Original entry on oeis.org
0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1
The terms and corresponding compositions begin:
0: ()
9: (3,1)
130: (6,2)
135: (5,1,1,1)
141: (4,1,2,1)
153: (3,1,3,1)
177: (2,1,4,1)
193: (1,6,1)
225: (1,1,5,1)
2052: (9,3)
2059: (8,2,1,1)
2062: (8,1,1,2)
2069: (7,2,2,1)
2074: (7,1,2,2)
2079: (7,1,1,1,1,1)
2089: (6,2,3,1)
2098: (6,1,3,2)
2103: (6,1,2,1,1,1)
These compositions are counted by
A224274 up to 0's.
A positive unordered version is
A349160, counted by
A006330 up to 0's.
A003242 counts Carlitz compositions.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
Cf.
A000070,
A000346,
A001250,
A001700,
A008549,
A027306,
A058622,
A088218,
A114121,
A120452,
A262977,
A294175,
A345917.
Statistics of standard compositions:
- The compositions themselves are the rows of
A066099.
- Heinz number is given by
A333219.
Classes of standard compositions:
-
stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]
A348617
Numbers whose sum of prime indices is twice their negated alternating sum.
Original entry on oeis.org
1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
Offset: 1
The terms and their prime indices begin:
1: ()
10: (3,1)
39: (6,2)
88: (5,1,1,1)
115: (9,3)
228: (8,2,1,1)
259: (12,4)
306: (7,2,2,1)
517: (15,5)
544: (7,1,1,1,1,1)
620: (11,3,1,1)
783: (10,2,2,2)
793: (18,6)
870: (10,3,2,1)
1150: (9,3,3,1)
1204: (14,4,1,1)
1241: (21,7)
1392: (10,2,1,1,1,1)
1656: (9,2,2,1,1,1)
1691: (24,8)
These partitions are counted by
A001523 up to 0's.
The reverse nonnegative version is
A349160, counted by
A006330 up to 0's.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000984,
A001700,
A028260,
A045931,
A120452,
A195017,
A257991,
A257992,
A262977,
A325698,
A344619,
A345958.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==-2*ats[primeMS[#]]&]
A214824
Number of solid standard Young tableaux of shape [[(2)^n],[2]].
Original entry on oeis.org
2, 16, 91, 456, 2145, 9724, 43043, 187408, 806208, 3436720, 14545982, 61214960, 256411935, 1069854660, 4449173475, 18450500640, 76326664260, 315077780160, 1298203997610, 5340028714800, 21932944632690, 89963953083576, 368565304248846, 1508283816983776
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012.
- G. Kreweras, Sur les extensions lineaires d'une famille particuliere d'ordres partiels, Discrete Math., 27 (1979), 279-295.
- G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
- Wikipedia, Young tableau
-
a:= proc(n) option remember; `if`(n=1, 2,
(4+(18+(22+4*n)*n)*n)*n*a(n-1)/(6+(-13+(1+(5+n)*n)*n)*n))
end:
seq(a(n), n=1..30);
-
a[1] = 2; a[n_] := a[n] = (4 + (18 + (22 + 4*n)*n)*n)*n*a[n - 1]/(6 + (-13 + (1 + (5 + n)*n)*n)*n); Array[a, 30] (* Jean-François Alcover, Nov 08 2017, translated from Maple *)
A226541
Number of unimodal compositions of n where the maximal part appears three times.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 2, 3, 5, 7, 11, 16, 24, 34, 51, 71, 102, 143, 201, 276, 384, 522, 714, 964, 1301, 1739, 2328, 3084, 4085, 5377, 7064, 9226, 12036, 15616, 20228, 26092, 33584, 43067, 55125, 70308, 89502, 113598, 143889, 181755, 229160, 288186, 361750, 453046, 566346, 706464
Offset: 0
Cf.
A006330 (max part appears once),
A114921 (max part appears twice).
Cf.
A188674 (max part m appears m times),
A001522 (max part m appears at least m times).
Cf.
A001523 (max part appears any number of times).
Cf.
A000009 (symmetric, max part m appears once; also symmetric, max part appears an odd number of times).
Cf.
A035363 (symmetric, max part m appears twice; also symmetric, max part appears an even number of times).
Cf.
A087897 (symmetric, max part m appears 3 times).
Cf.
A027349 (symmetric, max part m appears m times),
A189357 (symmetric, max part m appears at least m times).
-
N=66; x='x+O('x^N); Vec(sum(n=0,N, x^(3*n) / prod(k=1,n-1, 1-x^k )^2 ))
Comments