cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000097 Number of partitions of n if there are two kinds of 1's and two kinds of 2's.

Original entry on oeis.org

1, 2, 5, 9, 17, 28, 47, 73, 114, 170, 253, 365, 525, 738, 1033, 1422, 1948, 2634, 3545, 4721, 6259, 8227, 10767, 13990, 18105, 23286, 29837, 38028, 48297, 61053, 76926, 96524, 120746, 150487, 187019, 231643, 286152, 352413, 432937, 530383, 648245
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of 2*n with exactly 2 odd parts (offset 1). - Vladeta Jovovic, Jan 12 2005
Also number of transitions from one partition of n+2 to another, where a transition consists of replacing any two parts with their sum. Remove all 1' and 2' from the partition, replacing them with ((number of 2') + 1) and ((number of 1') + (number of 2') + 1); these are the two parts being summed. Number of partitions of n into parts of 2 kinds with at most 2 parts of the second kind, or of n+2 into parts of 2 kinds with exactly 2 parts of the second kind. - Franklin T. Adams-Watters, Mar 20 2006
From Christian Gutschwager (gutschwager(AT)math.uni-hannover.de), Feb 10 2010: (Start)
a(n) is also the number of pairs of partitions of n+2 which differ by only one box (for bijection see the first Gutschwager link).
a(n) is also the number of partitions of n with two parts marked.
a(n) is also the number of partitions of n+1 with two different parts marked. (End)
Convolution of A000041 and A008619. - Vaclav Kotesovec, Aug 18 2015
a(n) = P(/2,n), a particular case of P(/k,n) defined as follows: P(/0,n) = A000041(n) and P(/k,n) = P(/k-1, n) + P(/k-1,n-k) + P(/k-1, n-2k) + ... Also, P(/k,n) = the convolution of A000041 and the partitions of n with exactly k parts, and g.f. P(/k,n) = (g.f. for P(n)) * 1/(1-x)...(1-x^k). - Gregory L. Simay, Mar 22 2018
a(n) is also the sum of binomial(D(p),2) in partitions p of (n+3), where D(p)= number of different sizes of parts in p. - Emily Anible, Apr 03 2018
Also partitions of 2*(n+1) with alternating sum 2. Also partitions of 2*(n+1) with reverse-alternating sum -2 or 2. - Gus Wiseman, Jun 21 2021
Define the distance graph of the partitions of n using the distance function in A366156 as follows: two vertices (partitions) share an edge if and only if the distance between the vertices is 2. Then a(n) is the number of edges in the distance graph of the partitions of n. - Clark Kimberling, Oct 12 2023

Examples

			a(3) = 9 because we have 3, 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
From _Gus Wiseman_, Jun 22 2021: (Start)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with exactly 2 odd parts:
  (1,1)  (3,1)    (3,3)      (5,3)
         (2,1,1)  (5,1)      (7,1)
                  (3,2,1)    (3,3,2)
                  (4,1,1)    (4,3,1)
                  (2,2,1,1)  (5,2,1)
                             (6,1,1)
                             (3,2,2,1)
                             (4,2,1,1)
                             (2,2,2,1,1)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with alternating sum 2:
  (2)  (3,1)    (4,2)        (5,3)
       (2,1,1)  (2,2,2)      (3,3,2)
                (3,2,1)      (4,3,1)
                (3,1,1,1)    (3,2,2,1)
                (2,1,1,1,1)  (4,2,1,1)
                             (2,2,2,1,1)
                             (3,2,1,1,1)
                             (3,1,1,1,1,1)
                             (2,1,1,1,1,1,1)
(End)
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A024786.
Third column of Riordan triangle A008951 and of triangle A103923.
The case of reverse-alternating sum 1 or alternating sum 0 is A000041.
The case of reverse-alternating sum -1 or alternating sum 1 is A000070.
The normal case appears to be A004526 or A065033.
The strict case is A096914.
The case of reverse-alternating sum 2 is A120452.
The case of reverse-alternating sum -2 is A344741.
A001700 counts compositions with alternating sum 2.
A035363 counts partitions into even parts.
A058696 counts partitions of 2n.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Shift of A093695.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n->`if`(n<3,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) Product[1 - x^k, {k, 1, 100}]), {x, 0, 100}], x] (* Ben Branman, Mar 07 2012 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[If[# < 3, 2, 1]&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    (1/((1 - x) (1 - x^2) QPochhammer[x]) + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
    Table[Length@IntegerPartitions[n,All,Join[{1,2},Range[n]]],{n,0,15}] (* Robert Price, Jul 28 2020 and Jun 21 2021 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 3, 2];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[IntegerPartitions[n],ats[#]==2&]],{n,0,30,2}] (* Gus Wiseman, Jun 21 2021 *)
  • PARI
    my(x = 'x + O('x^66)); Vec( 1/((1-x)*(1-x^2)*eta(x)) ) \\ Joerg Arndt, Apr 29 2013

Formula

Euler transform of 2 2 1 1 1 1 1...
G.f.: 1/( (1-x) * (1-x^2) * Product_{k>=1} (1-x^k) ).
a(n) = Sum_{j=0..floor(n/2)} A000070(n-2*j), n>=0.
a(n) = A014153(n)/2 + A087787(n)/4 + A000070(n)/4. - Vaclav Kotesovec, Nov 05 2016
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 35*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Aug 18 2015, extended Nov 05 2016
a(n) = A120452(n) + A344741(n). - Gus Wiseman, Jun 21 2021

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 04 2004
Edited by Emeric Deutsch, Mar 23 2005
More terms from Franklin T. Adams-Watters, Mar 20 2006
Edited by Charles R Greathouse IV, Apr 20 2010

A026810 Number of partitions of n in which the greatest part is 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into exactly 4 parts.
Also the number of weighted cubic graphs on 4 nodes (=the tetrahedron) with weight n. - R. J. Mathar, Nov 03 2018
From Gus Wiseman, Jun 27 2021: (Start)
Also the number of strict integer partitions of 2n with alternating sum 4, or (by conjugation) partitions of 2n covering an initial interval of positive integers with exactly 4 odd parts. The strict partitions with alternating sum 4 are:
(4) (5,1) (6,2) (7,3) (8,4) (9,5) (10,6)
(5,2,1) (5,3,2) (5,4,3) (6,5,3) (7,6,3)
(6,3,1) (6,4,2) (7,5,2) (8,6,2)
(7,4,1) (8,5,1) (9,6,1)
(6,3,2,1) (6,4,3,1) (6,5,4,1)
(7,4,2,1) (7,4,3,2)
(7,5,3,1)
(8,5,2,1)
(6,4,3,2,1)
(End)

Examples

			From _Gus Wiseman_, Jun 27 2021: (Start)
The a(4) = 1 through a(10) = 9 partitions of length 4:
  (1111)  (2111)  (2211)  (2221)  (2222)  (3222)  (3322)
                  (3111)  (3211)  (3221)  (3321)  (3331)
                          (4111)  (3311)  (4221)  (4222)
                                  (4211)  (4311)  (4321)
                                  (5111)  (5211)  (4411)
                                          (6111)  (5221)
                                                  (5311)
                                                  (6211)
                                                  (7111)
(End)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • D. E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

Crossrefs

Cf. A001400, A026811, A026812, A026813, A026814, A026815, A026816, A069905 (3 positive parts), A002621 (partial sums), A005044 (first differences).
A non-strict version is A000710 or A088218.
This is column k = 2 of A152146.
A reverse version is A343941.

Programs

  • Magma
    [Round((n^3+3*n^2-9*n*(n mod 2))/144): n in [0..60]]; // Vincenzo Librandi, Oct 14 2015
  • Maple
    A049347 := proc(n)
            op(1+(n mod 3),[1,-1,0]) ;
    end proc:
    A056594 := proc(n)
            op(1+(n mod 4),[1,0,-1,0]) ;
    end proc:
    A026810 := proc(n)
            1/288*(n+1)*(2*n^2+4*n-13+9*(-1)^n) ;
            %-A049347(n)/9 ;
            %+A056594(n)/8 ;
    end proc: # R. J. Mathar, Jul 03 2012
  • Mathematica
    Table[Count[IntegerPartitions[n], {4, _}], {n, 0, 60}]
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 1, 1, 2, 3, 5, 6}, 60] (* Vincenzo Librandi, Oct 14 2015 *)
    Table[Length[IntegerPartitions[n, {4}]], {n, 0, 60}] (* Eric Rowland, Mar 02 2017 *)
    CoefficientList[Series[x^4/Product[1 - x^k, {k, 1, 4}], {x, 0, 60}], x] (* Robert A. Russell, May 13 2018 *)
  • PARI
    for(n=0, 60, print(n, " ", round((n^3 + 3*n^2 -9*n*(n % 2))/144))); \\ Washington Bomfim, Jul 03 2012
    
  • PARI
    x='x+O('x^60); concat([0, 0, 0, 0], Vec(x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)))) \\ Altug Alkan, Oct 14 2015
    
  • PARI
    vector(60, n, n--; (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 + real(I^n)/8 - ((n+2)%3-1)/9) \\ Altug Alkan, Oct 26 2015
    
  • PARI
    print1(0,", "); for(n=1,60,j=0;forpart(v=n,j++,,[4,4]); print1(j,", ")) \\ Hugo Pfoertner, Oct 01 2018
    

Formula

G.f.: x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = x^4/((1-x)^4*(1+x)^2*(1+x+x^2)*(1+x^2)).
a(n+4) = A001400(n). - Michael Somos, Apr 07 2012
a(n) = round( (n^3 + 3*n^2 -9*n*(n mod 2))/144 ). - Washington Bomfim, Jan 06 2021 and Jul 03 2012
a(n) = (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 -A049347(n)/9 +A056594(n)/8. - R. J. Mathar, Jul 03 2012
From Gregory L. Simay, Oct 13 2015: (Start)
a(n) = (n^3 + 3*n^2 - 9*n)/144 + a(m) - (m^3 + 3*m^2 - 9*m)/144 if n = 12k + m and m is odd. For example, a(23) = a(12*1 + 11) = (23^3 + 3*23^2 - 9*23)/144 + a(11) - (11^3 + 3*11^2 - 9*11)/144 = 94.
a(n) = (n^3 + 3*n^2)/144 + a(m) - (m^3 + 3*m^2)/144 if n = 12k + m and m is even. For example, a(22) = a(12*1 + 10) = (22^3 + 3*22^2)/144 + a(10) - (10^3 + 3*10^2)/144 = 84. (End)
a(n) = A008284(n,4). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n+1) = a(2n) + a(n+1) - a(n-3) and
a(2n) = a(2n-1) + a(n+2) - a(n-2). (End)

A344741 Number of integer partitions of 2n with reverse-alternating sum -2.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 14, 24, 39, 62, 95, 144, 212, 309, 442, 626, 873, 1209, 1653, 2245, 3019, 4035, 5348, 7051, 9229, 12022, 15565, 20063, 25722, 32847, 41746, 52862, 66657, 83768, 104873, 130889, 162797, 201902, 249620, 307789, 378428, 464122, 567721, 692828, 843448
Offset: 0

Views

Author

Gus Wiseman, Jun 08 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(r-1) times the number of odd parts, where r is the greatest part, so a(n) is the number of integer partitions of 2n with exactly two odd parts, neither of which is the greatest.
Also the number of reversed integer partitions of 2n with alternating sum -2.

Examples

			The a(2) = 1 through a(6) = 14 partitions:
  (31)  (42)    (53)      (64)        (75)
        (3111)  (3221)    (3331)      (4332)
                (4211)    (4222)      (4431)
                (311111)  (4321)      (5322)
                          (5311)      (5421)
                          (322111)    (6411)
                          (421111)    (322221)
                          (31111111)  (333111)
                                      (422211)
                                      (432111)
                                      (531111)
                                      (32211111)
                                      (42111111)
                                      (3111111111)
		

Crossrefs

The version for -1 instead of -2 is A000070.
The non-reversed negative version is A000097.
The ordered version appears to be A001700.
The version for 1 instead of -2 is A035363.
The whole set of partitions of 2n is counted by A058696.
The strict case appears to be A065033.
The version for -1 instead of -2 is A306145.
The version for 2 instead of -2 is A344613.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]==-2&]],{n,0,30,2}]
    - or -
    Table[Length[Select[IntegerPartitions[n],EvenQ[Max[#]]&&Count[#,_?OddQ]==2&]],{n,0,30,2}]

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A304620 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 15, 22, 34, 48, 70, 97, 137, 186, 255, 341, 459, 605, 800, 1042, 1359, 1751, 2256, 2879, 3672, 4645, 5869, 7367, 9234, 11508, 14319, 17730, 21916, 26975, 33143, 40570, 49575, 60376, 73402, 88974, 107666, 129933, 156546, 188148, 225767, 270300, 323115, 385453
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A027187.
From Gus Wiseman, Jun 26 2021: (Start)
Also the number of integer partitions of 2n+1 with odd greatest part and alternating sum 1, where the alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i, which is equal to the number of odd parts in the conjugate partition. For example, the a(0) = 1 through a(6) = 15 partitions are:
1 111 32 331 54 551 76
11111 3211 3222 3332 5422
1111111 3321 5411 5521
33111 33221 33331
321111 322211 55111
111111111 332111 322222
3311111 332221
32111111 333211
11111111111 541111
3322111
32221111
33211111
331111111
3211111111
1111111111111
Also odd-length partitions of 2n+1 with exactly one odd part.
(End)

Crossrefs

First differences are A027187.
The version for even instead of odd greatest part is A306145.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A067661 counts strict partitions of even length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k)/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 47; CoefficientList[Series[(1 + EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 26 2021 *)

Formula

a(n) = A000070(n) - A306145(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Aug 20 2018

A318156 Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067659.

Examples

			From _Gus Wiseman_, Jul 18 2021: (Start)
Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)   (7,6)      (8,7)      (9,8)
         (4,1)  (5,2)  (6,3)  (7,4)   (8,5)      (9,6)      (10,7)
                (6,1)  (7,2)  (8,3)   (9,4)      (10,5)     (11,6)
                       (8,1)  (9,2)   (10,3)     (11,4)     (12,5)
                              (10,1)  (11,2)     (12,3)     (13,4)
                                      (12,1)     (13,2)     (14,3)
                                      (6,4,2,1)  (14,1)     (15,2)
                                                 (6,4,3,2)  (16,1)
                                                 (8,4,2,1)  (6,5,4,2)
                                                            (8,4,3,2)
                                                            (8,6,2,1)
                                                            (10,4,2,1)
Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1.
(End)
		

Crossrefs

Partial sums of A067659.
The following relate to strict integer partitions of 2n+1 of even length with exactly one odd part.
- Allowing any length gives A036469.
- The non-strict version is A306145.
- The version for odd length is A318155 (non-strict: A304620).
- Allowing any number of odd parts gives A343942 (odd bisection of A067661).
A000041 counts partitions.
A027187 counts partitions of even length (strict: A067661).
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..60);
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)

Formula

a(n) = A036469(n) - A318155(n).
a(n) = A318155(n) - A078616(n).
a(n) ~ exp(Pi*sqrt(n/3)) * 3^(1/4) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A318155 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(k*(2*k+1)) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 22, 28, 35, 44, 55, 68, 84, 103, 126, 153, 185, 223, 268, 320, 381, 452, 535, 631, 742, 870, 1018, 1188, 1383, 1607, 1863, 2155, 2489, 2869, 3301, 3792, 4348, 4978, 5691, 6496, 7404, 8428, 9580, 10875, 12330, 13962, 15791, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067661.
From Gus Wiseman, Jul 29 2021: (Start)
Also the number of strict integer partitions of 2n+1 of odd length with exactly one odd part. For example, the a(1) = 1 through a(7) = 10 partitions are:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(6,2,1) (6,3,2) (6,5,2) (7,6,2)
(6,4,1) (7,4,2) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(10,2,1) (9,4,2)
(10,3,2)
(10,4,1)
(12,2,1)
The following relate to these partitions:
- Not requiring odd length gives A036469.
- The non-strict version is A304620.
- The version for even instead of odd length is A318156.
- Allowing any number of odd parts gives A346634 (bisection of A067659).
(End)

Crossrefs

First differences are A067661 (non-strict: A027187, odd bisection: A343942).
A000041 counts partitions.
A000070 counts partitions with alternating sum 1.
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k + 1))/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] + QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 29 2021 *)

Formula

a(n) = A036469(n) - A318156(n).
a(n) = A318156(n) + A078616(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018
Showing 1-6 of 6 results.