cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345909 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 1.

Original entry on oeis.org

1, 5, 7, 18, 21, 23, 26, 29, 31, 68, 73, 75, 78, 82, 85, 87, 90, 93, 95, 100, 105, 107, 110, 114, 117, 119, 122, 125, 127, 264, 273, 275, 278, 284, 290, 293, 295, 298, 301, 303, 308, 313, 315, 318, 324, 329, 331, 334, 338, 341, 343, 346, 349, 351, 356, 361
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2021

Keywords

Comments

The alternating sum of a composition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      1: (1)             87: (2,2,1,1,1)
      5: (2,1)           90: (2,1,2,2)
      7: (1,1,1)         93: (2,1,1,2,1)
     18: (3,2)           95: (2,1,1,1,1,1)
     21: (2,2,1)        100: (1,3,3)
     23: (2,1,1,1)      105: (1,2,3,1)
     26: (1,2,2)        107: (1,2,2,1,1)
     29: (1,1,2,1)      110: (1,2,1,1,2)
     31: (1,1,1,1,1)    114: (1,1,3,2)
     68: (4,3)          117: (1,1,2,2,1)
     73: (3,3,1)        119: (1,1,2,1,1,1)
     75: (3,2,1,1)      122: (1,1,1,2,2)
     78: (3,1,1,2)      125: (1,1,1,1,2,1)
     82: (2,3,2)        127: (1,1,1,1,1,1,1)
     85: (2,2,2,1)      264: (5,4)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for prime indices is A001105.
A version using runs of binary digits is A031448.
These are the positions of 1's in A124754.
The opposite (negative 1) version is A345910.
The reverse version is A345911.
The version for Heinz numbers of partitions is A345958.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000070 counts partitions with alternating sum 1 (ranked by A345957).
A000097 counts partitions with alternating sum 2 (ranked by A345960).
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909 (this sequence)/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==1&]

A347444 Number of odd-length integer partitions of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 8, 7, 14, 13, 24, 21, 40, 35, 62, 55, 99, 85, 151, 128, 224, 195, 331, 283, 481, 416, 690, 593, 980, 844, 1379, 1189, 1918, 1665, 2643, 2292, 3630, 3161, 4920, 4299, 6659, 5833, 8931, 7851, 11905, 10526, 15805, 13987, 20872, 18560, 27398
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1, ... ,y_k) to be the Product_i y_i^((-1)^(i-1)).
The reverse version (integer reverse-alternating product) is the same.

Examples

			The a(1) = 1 through a(9) = 14 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)        (9)
            (111)  (211)  (221)    (222)    (322)      (332)      (333)
                          (311)    (411)    (331)      (422)      (441)
                          (11111)  (21111)  (421)      (611)      (522)
                                            (511)      (22211)    (621)
                                            (22111)    (41111)    (711)
                                            (31111)    (2111111)  (22221)
                                            (1111111)             (32211)
                                                                  (33111)
                                                                  (42111)
                                                                  (51111)
                                                                  (2211111)
                                                                  (3111111)
                                                                  (111111111)
		

Crossrefs

The reciprocal version is A035363.
Allowing any alternating product gives A027193.
The multiplicative version (factorizations) is A347441.
Allowing any length gives A347446, reverse A347445.
Allowing any length and alternating product > 1 gives A347448.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347453.
The even-length instead of odd-length version is A347704.
A000041 counts partitions.
A000302 counts odd-length compositions, ranked by A053738.
A025047 counts wiggly compositions.
A026424 lists numbers with odd bigomega.
A027187 counts partitions of even length, strict A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts odd-length factorizations.
A347437 counts factorizations with integer alternating product.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]

A100824 Number of partitions of n with at most one odd part.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 3, 7, 5, 12, 7, 19, 11, 30, 15, 45, 22, 67, 30, 97, 42, 139, 56, 195, 77, 272, 101, 373, 135, 508, 176, 684, 231, 915, 297, 1212, 385, 1597, 490, 2087, 627, 2714, 792, 3506, 1002, 4508, 1255, 5763, 1575, 7338, 1958, 9296, 2436, 11732, 3010, 14742
Offset: 0

Views

Author

Vladeta Jovovic, Jan 13 2005

Keywords

Comments

From Gus Wiseman, Jan 21 2022: (Start)
Also the number of integer partitions of n with alternating sum <= 1, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These are the conjugates of partitions with at most one odd part. For example, the a(1) = 1 through a(9) = 12 partitions with alternating sum <= 1 are:
1 11 21 22 32 33 43 44 54
111 1111 221 2211 331 2222 441
2111 111111 2221 3311 3222
11111 3211 221111 3321
22111 11111111 4311
211111 22221
1111111 33111
222111
321111
2211111
21111111
111111111
(End)

Examples

			From _Gus Wiseman_, Jan 21 2022: (Start)
The a(1) = 1 through a(9) = 12 partitions with at most one odd part:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)     (8)     (9)
            (21)  (22)  (32)   (42)   (43)    (44)    (54)
                        (41)   (222)  (52)    (62)    (63)
                        (221)         (61)    (422)   (72)
                                      (322)   (2222)  (81)
                                      (421)           (432)
                                      (2221)          (441)
                                                      (522)
                                                      (621)
                                                      (3222)
                                                      (4221)
                                                      (22221)
(End)
		

Crossrefs

The case of alternating sum 0 (equality) is A000070.
A multiplicative version is A339846.
These partitions are ranked by A349150, conjugate A349151.
A000041 = integer partitions, strict A000009.
A027187 = partitions of even length, strict A067661, ranked by A028260.
A027193 = partitions of odd length, ranked by A026424.
A058695 = partitions of odd numbers.
A103919 = partitions by sum and alternating sum (reverse: A344612).
A277103 = partitions with the same number of odd parts as their conjugate.

Programs

  • Maple
    seq(coeff(convert(series((1+x/(1-x^2))/mul(1-x^(2*i),i=1..100),x,100),polynom),x,n),n=0..60); (C. Ronaldo)
  • Mathematica
    nmax = 50; CoefficientList[Series[(1+x/(1-x^2)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]<=1&]],{n,0,30}] (* _Gus Wiseman, Jan 21 2022 *)
  • PARI
    a(n) = if(n%2==0, numbpart(n/2), sum(i=1, (n+1)\2, numbpart((n-2*i+1)\2))) \\ David A. Corneth, Jan 23 2022

Formula

G.f.: (1+x/(1-x^2))/Product(1-x^(2*i), i=1..infinity). More generally, g.f. for number of partitions of n with at most k odd parts is (1+Sum(x^i/Product(1-x^(2*j), j=1..i), i=1..k))/Product(1-x^(2*i), i=1..infinity).
a(n) ~ exp(sqrt(n/3)*Pi) / (2*sqrt(3)*n) if n is even and a(n) ~ exp(sqrt(n/3)*Pi) / (2*Pi*sqrt(n)) if n is odd. - Vaclav Kotesovec, Mar 07 2016
a(2*n) = A000041(n). a(2*n + 1) = A000070(n). - David A. Corneth, Jan 23 2022

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005

A306145 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k+1) / Product_{j=1..2*k+1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 135, 187, 253, 343, 456, 607, 797, 1045, 1355, 1755, 2252, 2884, 3666, 4651, 5863, 7375, 9226, 11517, 14310, 17741, 21904, 26988, 33130, 40586, 49558, 60394, 73383, 88996, 107642, 129958, 156519, 188178, 225734, 270335, 323078, 385494
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A027193.
From Gus Wiseman, Jun 23 2021: (Start)
Also the number of even-length integer partitions of 2n+1 with exactly one odd part. For example, the a(1) = 1 through a(5) = 10 partitions are:
(2,1) (3,2) (4,3) (5,4) (6,5)
(4,1) (5,2) (6,3) (7,4)
(6,1) (7,2) (8,3)
(2,2,2,1) (8,1) (9,2)
(3,2,2,2) (10,1)
(4,2,2,1) (4,3,2,2)
(4,4,2,1)
(5,2,2,2)
(6,2,2,1)
(2,2,2,2,2,1)
Also partitions of 2n+1 with even greatest part and alternating sum 1.
(End)

Crossrefs

First differences are A027193.
The ordered version appears to be A087447 modulo initial terms.
The version for odd instead of even-length partitions is A304620.
The case of strict partitions is A318156.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions of even length, with strict case A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k + 1)/Product[(1 - x^j), {j, 1, 2 k + 1}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 47; CoefficientList[Series[(1 - EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 23 2021 *)

Formula

a(n) = A000070(n) - A304620(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Aug 20 2018

A347704 Number of even-length integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 6, 4, 11, 8, 18, 13, 33, 22, 49, 38, 79, 58, 122, 90, 186, 139, 268, 206, 402, 304, 569, 448, 817, 636, 1152, 907, 1612, 1283, 2220, 1791, 3071, 2468, 4162, 3409, 5655, 4634, 7597, 6283, 10171, 8478, 13491, 11336, 17906, 15088, 23513, 20012
Offset: 0

Views

Author

Gus Wiseman, Sep 17 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(9) = 8 partitions:
  (11)  (21)  (22)    (41)    (33)      (61)      (44)        (63)
              (31)    (2111)  (42)      (2221)    (62)        (81)
              (1111)          (51)      (4111)    (71)        (3321)
                              (2211)    (211111)  (2222)      (4221)
                              (3111)              (3221)      (6111)
                              (111111)            (3311)      (222111)
                                                  (4211)      (411111)
                                                  (5111)      (21111111)
                                                  (221111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

Allowing any alternating product >= 1 gives A000041, reverse A344607.
Allowing any alternating product gives A027187, odd bisection A236914.
The Heinz numbers of these partitions are given by A028260 /\ A347457.
The reverse and reciprocal versions are both A035363.
The multiplicative version (factorizations) is A347438, reverse A347439.
The odd-length instead of even-length version is A347444.
Allowing any length gives A347446.
A034008 counts even-length compositions, ranked by A053754.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]

A318156 Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067659.

Examples

			From _Gus Wiseman_, Jul 18 2021: (Start)
Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)   (7,6)      (8,7)      (9,8)
         (4,1)  (5,2)  (6,3)  (7,4)   (8,5)      (9,6)      (10,7)
                (6,1)  (7,2)  (8,3)   (9,4)      (10,5)     (11,6)
                       (8,1)  (9,2)   (10,3)     (11,4)     (12,5)
                              (10,1)  (11,2)     (12,3)     (13,4)
                                      (12,1)     (13,2)     (14,3)
                                      (6,4,2,1)  (14,1)     (15,2)
                                                 (6,4,3,2)  (16,1)
                                                 (8,4,2,1)  (6,5,4,2)
                                                            (8,4,3,2)
                                                            (8,6,2,1)
                                                            (10,4,2,1)
Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1.
(End)
		

Crossrefs

Partial sums of A067659.
The following relate to strict integer partitions of 2n+1 of even length with exactly one odd part.
- Allowing any length gives A036469.
- The non-strict version is A306145.
- The version for odd length is A318155 (non-strict: A304620).
- Allowing any number of odd parts gives A343942 (odd bisection of A067661).
A000041 counts partitions.
A027187 counts partitions of even length (strict: A067661).
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..60);
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)

Formula

a(n) = A036469(n) - A318155(n).
a(n) = A318155(n) - A078616(n).
a(n) ~ exp(Pi*sqrt(n/3)) * 3^(1/4) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A318155 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(k*(2*k+1)) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 22, 28, 35, 44, 55, 68, 84, 103, 126, 153, 185, 223, 268, 320, 381, 452, 535, 631, 742, 870, 1018, 1188, 1383, 1607, 1863, 2155, 2489, 2869, 3301, 3792, 4348, 4978, 5691, 6496, 7404, 8428, 9580, 10875, 12330, 13962, 15791, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067661.
From Gus Wiseman, Jul 29 2021: (Start)
Also the number of strict integer partitions of 2n+1 of odd length with exactly one odd part. For example, the a(1) = 1 through a(7) = 10 partitions are:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(6,2,1) (6,3,2) (6,5,2) (7,6,2)
(6,4,1) (7,4,2) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(10,2,1) (9,4,2)
(10,3,2)
(10,4,1)
(12,2,1)
The following relate to these partitions:
- Not requiring odd length gives A036469.
- The non-strict version is A304620.
- The version for even instead of odd length is A318156.
- Allowing any number of odd parts gives A346634 (bisection of A067659).
(End)

Crossrefs

First differences are A067661 (non-strict: A027187, odd bisection: A343942).
A000041 counts partitions.
A000070 counts partitions with alternating sum 1.
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k + 1))/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] + QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 29 2021 *)

Formula

a(n) = A036469(n) - A318156(n).
a(n) = A318156(n) + A078616(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018
Showing 1-7 of 7 results.