cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A006361 Antichains (or order ideals) in the poset 2*2*4*n or size of the distributive lattice J(2*2*4*n).

Original entry on oeis.org

1, 105, 3490, 59542, 650644, 5157098, 32046856, 164489084, 723509159, 2801747767, 9748942554, 30967306114, 90930233726, 249319296218, 643622467414, 1575086681342, 3675063064675, 8215220917795
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Empirical G.f.: (x^10 +88*x^9 +1841*x^8 +13812*x^7 +44050*x^6 +64374*x^5 +44050*x^4 +13812*x^3 +1841*x^2 +88*x +1)/(1-x)^17. - Colin Barker, May 29 2012

Extensions

More terms from Mitch Harris, Jul 16 2000

A006362 Antichains (or order ideals) in the poset 2*2*5*n or size of the distributive lattice J(2*2*5*n).

Original entry on oeis.org

1, 196, 11196, 307960, 5157098, 60112692, 530962446, 3764727340, 22326282261, 114158490576, 515063238810, 2087929609236, 7714649716552, 26285397502428, 83379798088110, 248202756212336, 697998155989501, 1864955619299196
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Mitch Harris, Jul 16 2000

A056933 Antichains (or order ideals) in the poset 2*2*6*n or size of the distributive lattice J(2*2*6*n).

Original entry on oeis.org

1, 336, 30900, 1301610, 32046856, 530962446, 6479344016, 61951251333, 485198553532, 3217462615688, 18528857431906, 94529315562186, 434088353496446, 1817613939845670, 7014049051387480, 25167786776727516
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

A056934 Antichains (or order ideals) in the poset 2*2*7*n or size of the distributive lattice J(2*2*7*n).

Original entry on oeis.org

1, 540, 75966, 4701698, 164489084, 3764727340, 61951251333, 782318812002, 7946895019096, 67270102239520, 487605585591870, 3092040981805272, 17451258588313354, 88902214572208640, 413569247116248032
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

A056935 Antichains (or order ideals) in the poset 2*3*3*n or size of the distributive lattice J(2*3*3*n).

Original entry on oeis.org

1, 175, 8790, 211250, 3092808, 31635580, 246441430, 1549486490, 8192995479, 37548347569, 152602439244, 559835910940, 1880152558980, 5846268790220, 16988036626948, 46486024648180, 120562654732065, 297976456047575
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

A056936 Antichains (or order ideals) in the poset 2*3*4*n or size of the distributive lattice J(2*3*4*n).

Original entry on oeis.org

1, 490, 59542, 3092808, 89613429, 1691136270, 22954776044, 239831111938, 2024703039198, 14318216628378, 87184226214168, 467034400160664, 2239064967256060, 9741467994941264, 38902816410160608
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

A056937 Number of antichains (or order ideals) in the poset 3*3*3*n or size of the distributive lattice J(3*3*3*n).

Original entry on oeis.org

1, 980, 211250, 17792748, 781429368, 21238316210, 398925639186, 5585711269074, 61555624183223, 555895303974238, 4242859829536322, 28038281717424550, 163544036697306396, 855242362045150398
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

A296834 T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.

Original entry on oeis.org

2, 3, 3, 5, 6, 5, 8, 14, 14, 8, 13, 31, 43, 31, 13, 21, 70, 132, 132, 70, 21, 34, 157, 402, 573, 402, 157, 34, 55, 353, 1230, 2441, 2441, 1230, 353, 55, 89, 793, 3755, 10485, 14379, 10485, 3755, 793, 89, 144, 1782, 11475, 44951, 85500, 85500, 44951, 11475, 1782, 144
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Table starts
..2....3.....5......8.......13........21.........34...........55............89
..3....6....14.....31.......70.......157........353..........793..........1782
..5...14....43....132......402......1230.......3755........11475.........35054
..8...31...132....573.....2441.....10485......44951.......192730........826498
.13...70...402...2441....14379.....85500.....508111......3017667......17931240
.21..157..1230..10485....85500....706534....5834429.....48122349.....397252886
.34..353..3755..44951...508111...5834429...67007971....768117235....8815633972
.55..793.11475.192730..3017667..48122349..768117235..12228697715..194991656916
.89.1782.35054.826498.17931240.397252886.8815633972.194991656916.4321362259224

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..1
..1..0..1..1. .1..1..1..1. .0..0..1..0. .0..0..0..0. .0..1..0..0
..0..0..0..0. .1..1..1..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..1..1. .1..0..0..1. .0..1..0..0
..0..0..1..0. .0..0..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..1
		

Crossrefs

Column 1 is A000045(n+2).
Column 2 is A006356.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3)
k=3: [order 15]
k=4: [order 50]

A106803 Expansion of x*(1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

Essentially a duplicate of A077998: a(n) = A077998(n-1). - Joerg Arndt, Aug 14 2015
a(n) appears in the formula for the nonnegative powers of sigma, the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with rho = 2*cos(Pi/7), the ratio of the smaller heptagon diagonal to the side length, as follows. sigma^n = a(n-1)*1 + B(n)*rho + a(n)*sigma, n>=0, with B(n)=A006054(n). Put a(-1):= 1. See the Steinbach reference, and a comment under A052547.
a(n-1) is the top left entry of the n-th power of the 3X3 matrix [0, 1, 0; 1, 1, 1; 0, 1, 1] or of the 3X3 matrix [0, 0, 1; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    m = {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0] = {0, 1, 1}; v[n_] := m.v[n - 1]; Table[v[n][[1]], {n, 0, 30}] (* Edited and corrected by L. Edson Jeffery, Oct 18 2017 *)
    RecurrenceTable[{a[1]== 0, a[2]== 1, a[3]== 1, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 14 2015 *)
  • PARI
    concat(0,Vec((1-x)/(x^3-2*x-x^2+1)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = A077998(n-1). - R. J. Mathar, Aug 07 2008
a(n) = A187070(2*n), a(n) = A187068(2*n+2). - L. Edson Jeffery, Mar 10 2011
a(n+1) = - A199853(n+1). - G. C. Greubel, Aug 14 2015
a(n) = 2*a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=a(2)=1. - G. C. Greubel, Aug 14 2015
a(n) = A006356(n-2) for n > 1. - Georg Fischer, Oct 21 2018

Extensions

Edited by N. J. A. Sloane, Aug 08 2008

A120747 Sequence relating to the 11-gon (or hendecagon).

Original entry on oeis.org

0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1

Views

Author

Gary W. Adamson, Jul 01 2006

Keywords

Comments

The hendecagon is an 11-sided polygon. The preferred word in the OEIS is 11-gon.
The lengths of the diagonals of the regular 11-gon are r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5, where r[1] = 1 is the length of the edge.
The value of limit(a(n)/a(n-1),n=infinity) equals the longest diagonal r[5].
The a(n) equal the matrix elements M^n[1,2], where M = Matrix([[1,1,1,1,1], [1,1,1,1,0], [1,1,1,0,0], [1,1,0,0,0], [1,0,0,0,0]]). The characteristic polynomial of M is (x^5 - 3x^4 - 3x^3 + 4x^2 + x - 1) with roots x1 = -r[4]/r[3], x2 = -r[2]/r[4], x3 = r[1]/r[2], x4 = r[3]/r[5] and x5 = r[5]/r[1].
Note that M^4*[1,0,0,0,0] = [55, 50, 41, 29, 15] which are all terms of the 5-wave sequence A038201. This is also the case for the terms of M^n*[1,0,0,0,0], n>=1.

Examples

			From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
  r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
  r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
    0,   0,   0,   0,   1, ...
    1,   1,   1,   1,   1, ...
    1,   2,   3,   4,   5, ...
    5,   9,  12,  14,  15, ...
   15,  29,  41,  50,  55, ...
   55, 105, 146, 175, 190, ...
  190, 365, 511, 616, 671, ... (End)
		

Crossrefs

From Johannes W. Meijer, Aug 03 2011: (Start)
Cf. A006358 (T(n+2,1) and T(n+1,5)), A069006 (T(n+1,2)), A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
Cf. A000045 (m=2; pentagon or 5-gon); A006356, A006054 and A038196 (m=3: heptagon or 7-gon); A006357, A076264, A091024 and A038197 (m=4: enneagon or 9-gon); A006359, A069007, A069008, A069009, A070778 (m=6; tridecagon or 13-gon); A025030 (m=7: pentadecagon or 15-gon); A030112 (m=8: heptadecagon or 17-gon). (End)

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
    
  • Maple
    nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
  • SageMath
    def A120747_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
    A120747_list(40) # G. C. Greubel, Nov 13 2022

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
From Johannes W. Meijer, Aug 03 2011: (Start)
a(n) = T(n,4) with T(n,k) = Sum_{k1 = 6-k..6} T(n-1, k1), T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1, n>=1 and 1 <= k <= 5. [Steinbach]
Sum_{k=1..5} T(n,k)*r[k] = r[5]^n, n>=1. [Steinbach]
r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5. [Kappraff]
Sum_{k=1..5} T(n,k) = A006358(n-1).
Limit_{n -> 00} T(n,k)/T(n-1,k) = r[5], 1 <= k <= 5.
sequence(sequence( T(n,k), k=2..5), n>=1) = A038201(n-4).
G.f.: (x^2*(x - x1)*(x - x2))/((x - x3)*(x - x4)*(x - x5)*(x - x6)*(x - x7)) with x1 = phi, x2 = (1-phi), x3 = r[1] - r[3], x4 = r[3] - r[5], x5 = r[5] - r[4], x6 = r[4] - r[2], x7 = r[2], where phi = (1 + sqrt(5))/2 is the golden ratio A001622. (End)

Extensions

Edited and information added by Johannes W. Meijer, Aug 03 2011
Previous Showing 31-40 of 57 results. Next