cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A286037 a(n) = T(A285984(n))^2, where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 37271025, 4917515625, 32996505944592590400, 4353432777721630310400, 29211445283110309395256454577225, 3854046352373857001854365165911025, 25860572538708927496411840821477504196161600, 3411945020082158343071838489442339152945921600, 22894081602203374655543296113789919615194083223613314225
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

a(n) =(T(b(n)))^2, parameters K=a(n) of the Bachet Mordell equation y^2=x^3+K, with x= 3*T(b(n)) and y= T(b(n))*sqrt(27*T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A285984(n).

Examples

			For n = 2, b(n) = 374, a(n)= 4917515625.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = (T(b(n)))^2 = (A000217(A285984(n)))^2 = (A000217(107184))^2 = (5744258520)^2=32996505944592590400.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,4917515625’); for n from 2 to 1000 do b:= 264*sqrt(27*(b0^2+b0)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = (T(b(n)))^2 (this sequence), one has :
a(n) = ([264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)^2.
Empirical g.f.: 27225*x*(1369 + 179256*x + 30879367019*x^2 + 168661970400*x^3 + 30879367019*x^4 + 179256*x^5 + 1369*x^6) / ((1 - x)*(1 - 940898*x + x^2)*(1 - 970*x + x^2)*(1 + 970*x + x^2)*(1 + 940898*x + x^2)). - Colin Barker, May 01 2017

A173202 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 + 1 for a = 0,1,2, ... (solutions x are given by the sequence A000466).

Original entry on oeis.org

0, 5, 58, 207, 500, 985, 1710, 2723, 4072, 5805, 7970, 10615, 13788, 17537, 21910, 26955, 32720, 39253, 46602, 54815, 63940, 74025, 85118, 97267, 110520, 124925, 140530, 157383, 175532, 195025, 215910, 238235, 262048, 287397, 314330, 342895
Offset: 1

Views

Author

Michel Lagneau, Feb 12 2010

Keywords

Comments

For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is an integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.

Examples

			With a=3, x = 35 and y = 207, and then 207^2 = 35^2 - 26.
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
  • D. Duverney, Theorie des nombres (2e edition), Dunod, 2007, p.151

Crossrefs

Diophantine equations: see also Pellian equation: (A081233, A081234), (A081231, A082394), (A081232, A082393); Mordell equation: A053755, A173200; Diophantine equations: A006452, A006451, A006454.

Programs

  • Magma
    I:=[0, 5, 58, 207]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
  • Maple
    for a from 0 to 100 do : z := evalf(a*(8*a^2 - 3)) : print (z) :od :
  • Mathematica
    CoefficientList[Series[x*(5+38*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
    CoefficientList[Series[E^x (5 x + 24 x^2 + 8 x^3), {x, 0, 40}], x]*Table[n!, {n, 0, 40}] (* Stefano Spezia, Dec 04 2018 *)

Formula

y = a*(8*a^2 - 3).
a(n) = sqrt(A000466(n)^3 - A080663(n)). - Artur Jasinski, Nov 26 2011
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 21*n - 5.
G.f.: x^2*(5 + 38*x + 5*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: exp(x)*(5*x + 24*x^2 + 8*x^3). - Stefano Spezia, Dec 04 2018

A225115 Triangular numbers of the form p^k - 1, where p is a prime number and k >= 2.

Original entry on oeis.org

3, 15, 120, 528, 4095, 139128, 160554240, 812293020528, 379188080252621270252095320
Offset: 1

Views

Author

Alex Ratushnyak, Apr 29 2013

Keywords

Comments

There are at least other 4 terms greater than a(9) that can be easily obtained by solving the Diophantine equation T(n) = p^2-1, the smallest being T(75055187665070250755513356704300447). - Giovanni Resta, Apr 29 2013

Crossrefs

Programs

  • PARI
    t=0;for(n=1,10^9,t+=n; if(isprimepower(t+1)>=2,print1(t,", "))); \\ Joerg Arndt, Apr 29 2013

Extensions

a(9) from Giovanni Resta, Apr 29 2013

A227480 Triangular numbers of the form p^2 - 1 where p is a prime.

Original entry on oeis.org

3, 120, 528, 139128, 160554240, 812293020528, 379188080252621270252095320, 2816640597719456759751165488439681098364673273236637971046370174350128
Offset: 1

Views

Author

Shreevatsa R, Jul 12 2013

Keywords

Examples

			139128 is both 527*528/2 and 373^2 - 1 (and 373 is prime).
		

Crossrefs

Subsequence of A006454 and of A225115.

Programs

  • Mathematica
    Select[Prime[Range[100000]]^2-1,OddQ[Sqrt[8#+1]]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Sep 17 2023 *)

Extensions

a(7)-a(8) from Giovanni Resta, Jul 13 2013
Previous Showing 11-14 of 14 results.