cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A282504 Expansion of 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 28, 37, 49, 65, 88, 119, 160, 214, 285, 381, 511, 687, 923, 1237, 1656, 2217, 2971, 3985, 5345, 7166, 9603, 12867, 17244, 23115, 30989, 41543, 55684, 74634, 100032, 134081, 179729, 240919, 322935, 432858, 580191, 777680, 1042407, 1397262, 1872911, 2510457
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of compositions (ordered partitions) into centered square numbers (A001844).
Conjecture: every number > 1 is the sum of at most 6 centered square numbers.
Extended conjecture: every number > 1 is the sum of at most k+2 centered k-gonal numbers.

Examples

			a(8) = 5 because we have [5, 1, 1, 1], [1, 5, 1, 1], [1, 1, 5, 1], [1, 1, 1, 5] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(2 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=0, 54, x^(2*k*(k + 1) + 1))) + O(x^54)) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).
a(n) ~ c / r^n, where r = 0.746043978237212782246711857485153004976647... is the root of the equation sqrt(r) * EllipticTheta(2, 0, r^2) = 2 and c = 0.453173429667590077751072798128748901015122665... . - Vaclav Kotesovec, Feb 17 2017

A322800 Number of compositions (ordered partitions) of n into octagonal numbers (A000567).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 37, 46, 56, 68, 83, 102, 126, 156, 195, 244, 304, 377, 466, 575, 709, 874, 1080, 1338, 1660, 2061, 2557, 3170, 3926, 4857, 6006, 7428, 9191, 11380, 14096, 17465, 21640, 26807, 33197, 41099
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(3*t-2)>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i*(3*i-2)), i=1..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 54; CoefficientList[Series[1/(1 - Sum[x^(k (3 k - 2)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(3*k-2))).

A219331 L.g.f.: -log(1 - Sum_{n>=1} x^(n^2)) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 8, 13, 28, 36, 45, 59, 92, 134, 186, 269, 375, 538, 761, 1080, 1520, 2157, 3060, 4339, 6181, 8750, 12394, 17554, 24912, 35322, 50066, 70957, 100596, 142665, 202278, 286790, 406520, 576347, 817142, 1158528, 1642461, 2328536, 3301283, 4680417, 6635688
Offset: 1

Views

Author

Paul D. Hanna, Apr 12 2013

Keywords

Comments

Limit a(n)/a(n+1) = 0.705346681379806989636379706393941505260078161512292870... is a real root of 1 = Sum_{n>=1} x^(n^2).

Examples

			L.g.f.: L(x) = x + x^2/2 + x^3/3 + 5*x^4/4 + 6*x^5/5 + 7*x^6/6 + 8*x^7/7 + 13*x^8/8 + 28*x^9/9 + 36*x^10/10 +...
where
exp(L(x)) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 11*x^9 + 16*x^10 + 22*x^11 + 30*x^12 +...+ A006456(n)*x^n +...
exp(-L(x)) = 1 - x - x^4 - x^9 - x^16 - x^25 - x^36 +...+ -x^(n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n*polcoeff(-log(1-sum(r=1,sqrtint(n+1),x^(r^2)+x*O(x^n))),n)}
    for(n=1,50,print1(a(n),", "))

Formula

Logarithmic derivative of A006456, where A006456(n) is the number of compositions of n into sums of squares.

A240944 Number of compositions of n into square parts k^2 where there are k sorts of part k^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 7, 9, 15, 28, 45, 66, 99, 164, 269, 422, 651, 1028, 1654, 2637, 4149, 6522, 10350, 16467, 26091, 41205, 65174, 103339, 163833, 259361, 410376, 649827, 1029543, 1630725, 2581848, 4087797, 6473832, 10253370, 16237375, 25711316, 40714953, 64478427, 102111230, 161701086, 256062990, 405499697, 642156651
Offset: 0

Views

Author

Joerg Arndt, Aug 04 2014

Keywords

Crossrefs

Cf. A006456 (compositions into squares).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, `if`(n<0, 0,
          add(k*a(n-k^2), k=1..isqrt(n))))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 04 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, If[n<0, 0, Sum[k*a[n-k^2], {k, Sqrt[n]}]]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/(1 - sum(k=1, 1+sqrtint(N), k * x^(k^2))) )

Formula

G.f.: 1/(1 - sum(k>=1, k * x^(k^2)) ).

A298640 Number of compositions (ordered partitions) of n^2 into squares > 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 8, 12, 129, 874, 9630, 167001, 3043147, 72844510, 2423789655, 106665874384, 6156805673648, 470151743582651, 47558937432498729, 6363358599941131580, 1126147544855148769425, 263646401550138303553708, 81649922556593759124887197
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2018

Keywords

Examples

			a(5) = 8 because we have [25], [16, 9], [9, 16], [9, 4, 4, 4, 4], [4, 9, 4, 4, 4], [4, 4, 9, 4, 4], [4, 4, 4, 9, 4] and [4, 4, 4, 4, 9].
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j^2), j=2..isqrt(n)))
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j^2], {j, 2, Floor @ Sqrt[n]}]];
    a[n_] := b[n^2];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)

Formula

a(n) = [x^(n^2)] 1/(1 - Sum_{k>=2} x^(k^2)).
a(n) = A280542(A000290(n)).

A303667 Expansion of 2/((1 - x)*(3 - theta_3(x))), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 13, 18, 25, 36, 52, 74, 104, 147, 209, 297, 421, 596, 845, 1199, 1701, 2411, 3417, 4844, 6868, 9738, 13806, 19573, 27749, 39342, 55778, 79079, 112112, 158944, 225342, 319479, 452941, 642152, 910404, 1290719, 1829911, 2594344, 3678108, 5214606, 7392970, 10481335
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Comments

Partial sums of A006456.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(n=0, 1, add(b(n-i^2), i=1..isqrt(n)))
        end:
    a:= proc(n) option remember;
          `if`(n<0, 0, b(n)+a(n-1))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 28 2018
  • Mathematica
    nmax = 45; CoefficientList[Series[2/((1 - x) (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 1, nmax}])), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 45}]]

Formula

G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k^2))).

A339419 Number of compositions (ordered partitions) of n into an odd number of squares.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 3, 1, 5, 5, 7, 14, 10, 27, 27, 44, 69, 73, 144, 158, 260, 366, 466, 775, 940, 1490, 2031, 2803, 4264, 5551, 8460, 11525, 16399, 23864, 32435, 47981, 66005, 94701, 135072, 187999, 272678, 379095, 543626, 769490, 1083788, 1553661, 2177681, 3113333
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(9) = 5 because we have [9], [4, 4, 1], [4, 1, 4], [1, 4, 4] and [1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; local r, f, g;
          if n=0 then t else r, f, g:=$0..2; while f<=n
          do r, f, g:= r+b(n-f, 1-t), f+2*g-1, g+1 od; r fi
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 47; CoefficientList[Series[1/(3 - EllipticTheta[3, 0, x]) - 1/(1 + EllipticTheta[3, 0, x]), {x, 0, nmax}], x]

Formula

G.f.: 1 / (3 - theta_3(x)) - 1 / (1 + theta_3(x)), where theta_3() is the Jacobi theta function.
a(n) = (A006456(n) - A317665(n)) / 2.
a(n) = -Sum_{k=0..n-1} A006456(k) * A317665(n-k).

A347711 Number of compositions (ordered partitions) of n into at most 4 squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 8, 3, 5, 6, 6, 12, 2, 5, 16, 7, 8, 10, 15, 12, 3, 15, 14, 16, 12, 8, 30, 16, 1, 18, 23, 18, 17, 18, 21, 28, 8, 11, 42, 19, 15, 32, 30, 24, 5, 23, 39, 30, 20, 20, 48, 36, 6, 34, 44, 21, 36, 24, 36, 52, 2, 34, 60, 31, 23, 36, 66, 36
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..4} A337165(n,k). - Alois P. Heinz, Sep 10 2021

A347806 Expansion of (theta_3(x) - 1)^3 / (4 * (3 - theta_3(x))).

Original entry on oeis.org

1, 1, 1, 4, 5, 6, 10, 14, 22, 30, 41, 62, 88, 123, 173, 248, 354, 500, 710, 1006, 1427, 2024, 2867, 4066, 5767, 8176, 11591, 16436, 23301, 33032, 46832, 66396, 94137, 133461, 189209, 268252, 380315, 539190, 764431, 1083764, 1536498, 2178364, 3088363, 4378502, 6207581
Offset: 3

Views

Author

Ilya Gutkovskiy, Sep 14 2021

Keywords

Comments

Number of compositions (ordered partitions) of n into 3 or more squares.

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), add((
         s->`if`(s>n, 0, b(n-s, max(0, t-1))))(j^2), j=1..isqrt(n)))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..47);  # Alois P. Heinz, Sep 14 2021
  • Mathematica
    nmax = 47; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^3/(4 (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] // Drop[#, 3] &

Formula

a(n) = Sum_{k=3..n} A337165(n,k). - Alois P. Heinz, Sep 14 2021

A347807 Expansion of (theta_3(x) - 1)^4 / (8 * (3 - theta_3(x))).

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 14, 19, 29, 41, 56, 88, 123, 170, 245, 351, 500, 704, 1003, 1427, 2021, 2867, 4060, 5763, 8176, 11585, 16430, 23301, 33032, 46826, 66393, 94131, 133458, 189209, 268243, 380315, 539190, 764422, 1083758, 1536495, 2178361, 3088357, 4378496, 6207581
Offset: 4

Views

Author

Ilya Gutkovskiy, Sep 14 2021

Keywords

Comments

Number of compositions (ordered partitions) of n into 4 or more squares.

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), add((
         s->`if`(s>n, 0, b(n-s, max(0, t-1))))(j^2), j=1..isqrt(n)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..47);  # Alois P. Heinz, Sep 14 2021
  • Mathematica
    nmax = 47; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^4/(8 (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] // Drop[#, 4] &

Formula

a(n) = Sum_{k=4..n} A337165(n,k). - Alois P. Heinz, Sep 14 2021
Previous Showing 11-20 of 56 results. Next