cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A354651 G.f. A(x) satisfies: 1/(1 - x) = Sum_{n>=1} (-1)^(n-1) * A(x)^(n^2).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 25, 64, 168, 434, 1136, 3046, 8246, 22400, 61290, 169036, 468628, 1304390, 3646104, 10232796, 28814306, 81376616, 230462906, 654363034, 1862260359, 5311064061, 15176758091, 43448083792, 124593820615, 357853635931, 1029326055479, 2964817204082
Offset: 1

Views

Author

Paul D. Hanna, Jun 18 2022

Keywords

Comments

Conjectures:
(C.1) a(4*n) = 0 (mod 2) for n >= 0.
(C.2) a(4*n+1) = a(4*n+2) = a(4*n+3) (mod 2) for n >= 0.
(C.3) a(4*n+1) = a(4*n+3) (mod 4) for n >= 0.

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 25*x^7 + 64*x^8 + 168*x^9 + 434*x^10 + 1136*x^11 + 3046*x^12 + 8246*x^13 + 22400*x^14 + ...
where
1/(1-x) = A(x) - A(x)^4 + A(x)^9 - A(x)^16 + A(x)^25 - A(x)^36 + A(x)^49 -+ ... + (-1)^(n-1) * A(x)^(n^2) + ...
By the Jacobi triple product
(1 - 3*x)/(1 - x) = (1 - A(x)^2)*(1 - A(x))^2 * (1 - A(x)^4) * (1 - A(x)^3)^2 * (1 - A(x)^6) * (1 - A(x)^5)^2 * (1 - A(x)^8) * (1 - A(x)^7)^2 * ...
		

Crossrefs

Cf. A006456 (the series reversion of -A(-x) is the g.f. for A006456, apart from the initial term).
Cf. A355151.

Programs

  • PARI
    {a(n) = my(A=[0,1],t); for(i=1,n, A = concat(A,0); t = sqrtint(#A)+1;
    A[#A] = 1 + polcoeff( sum(n=1,t, (-1)^n * Ser(A)^(n^2)), #A-1)); H=A; A[n+1]}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) (1 - 3*x)/(1 - x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).
(2) (1 - 3*x)/(1 - x) = Product_{n>=1} (1 - A(x)^(2*n)) * (1 - A(x)^(2*n-1))^2, by the Jacobi triple product identity.
(3) (1 - 3*x)^2/(1 - x)^2 = 1 + 4*Sum_{n>=1} (-1)^n * A(x)^(2*n-1)/(1 + A(x)^(2*n-1)), by a q-series identity for the Jacobi theta_3 function.
(4) (1 - 3*x)^4/(1 - x)^4 = 1 + 8*Sum_{n>=1} (-1)^n * n * A(x)^n/(1 + A(x)^n), by a q-series identity for the Jacobi theta_3 function.

A363748 Number of compositions into sums of fourth powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 22, 26, 31, 37, 44, 52, 61, 71, 82, 94, 107, 121, 136, 152, 169, 188, 210, 236, 267, 304, 348, 400, 461, 532, 614, 708, 815, 936, 1072, 1224, 1393, 1581, 1791, 2027, 2294, 2598, 2946, 3346, 3807, 4339, 4953, 5661, 6476, 7412, 8484, 9708, 11101, 12682, 14474
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2023

Keywords

Comments

This sequence is different from A291149.

Examples

			a(18)=4 counts the compositions 1^4+1^4+1^4+2^4 = 1^4+1^4+2^4+1^4 = 1^4+2^4+1^4+1^4 = 2^4+1^4+1^4+1^4. - _R. J. Mathar_, Jun 21 2023
		

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ispower(j, 4)*v[i-j+1])); v;

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k^4)).

A363749 Number of compositions into sums of fifth powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 42, 47, 53, 60, 68, 77, 87, 98, 110, 123, 137, 152, 168, 185
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2023

Keywords

Comments

This sequence is different from A291168.

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ispower(j, 5)*v[i-j+1])); v;

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k^5)).

A232266 Triangle where T(n,k) = number of compositions of n^2 - k^2 into sums of squares for k=0..n, n>=0, as read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 11, 7, 3, 1, 124, 88, 30, 5, 1, 2870, 2024, 710, 124, 11, 1, 133462, 94137, 33033, 5767, 502, 22, 1, 12477207, 8800750, 3088365, 539192, 46832, 2024, 43, 1, 2344649612, 1653790807, 580347968, 101321507, 8800750, 380315, 8176, 88, 1, 885591183971, 624648802700, 219201637352, 38269865019, 3324109524, 143647802, 3088365, 33033, 175, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2013

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 1, 1;
11, 7, 3, 1;
124, 88, 30, 5, 1;
2870, 2024, 710, 124, 11, 1;
133462, 94137, 33033, 5767, 502, 22, 1;
12477207, 8800750, 3088365, 539192, 46832, 2024, 43, 1;
2344649612, 1653790807, 580347968, 101321507, 8800750, 380315, 8176, 88, 1;
885591183971, 624648802700, 219201637352, 38269865019, 3324109524, 143647802, 3088365, 33033, 175, 1; ...
where T(n,k) = coefficient of x^(n^2-k^2) in the series:
1/(1 - x - x^4 - x^9 - x^16 - x^25 - x^36 -...- x^(n^2) -...) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 11*x^9 + 16*x^10 + 22*x^11 + 30*x^12 + 43*x^13 + 62*x^14 + 88*x^15 + 124*x^16 + 175*x^17 + 249*x^18 + 354*x^19 + 502*x^20 + 710*x^21 + 1006*x^22 + 1427*x^23 + 2024*x^24 + 2870*x^25 +...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(1/(1-sum(m=1,n+1,x^(m^2))+x*O(x^(n^2-k^2))),n^2-k^2)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = A006456(n^2-k^2).
T(n,k) = [x^(n^2-k^2)] 1/(1 - Sum_{j>=1} x^(j^2)).
T(n,0) = Sum_{k=1..n} T(n,k) for n>=1.

A281154 Expansion of (Sum_{k>=2} x^(k^2))^2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 2 squares > 1.

Examples

			G.f. = x^8 + 2*x^13 + x^18 + 2*x^20 + 2*x^25 + 2*x^29 + x^32 + 2*x^34 + 2*x^40 + ...
a(13) = 2 because we have [9, 4] and [4, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[x^k^2, {k, 2, nmax}]^2, {x, 0, nmax}], x]
    CoefficientList[Series[(1 + 2 x - EllipticTheta[3, 0, x])^2/4, {x, 0, 105}], x]

Formula

G.f.: (Sum_{k>=2} x^(k^2))^2.
G.f.: (1/4)*(1 + 2*x - theta_3(0,x))^2, where theta_3 is the 3rd Jacobi theta function.

A282583 Number of compositions (ordered partitions) of n into quarter-squares (A002620).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 33, 60, 107, 193, 345, 621, 1113, 1999, 3586, 6439, 11554, 20741, 37223, 66814, 119916, 215237, 386310, 693375, 1244494, 2233686, 4009113, 7195757, 12915268, 23180946, 41606232, 74676840, 134033474, 240569601, 431785583, 774989076, 1390986741, 2496608365, 4481029864, 8042762869
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2017

Keywords

Examples

			a(4) = 6 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - Sum[x^Floor[k^2/4], {k, 2, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=2, 40, x^floor(k^2/4)) + O(x^41))) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=2} x^(floor(k^2/4))).

A300715 Number of compositions (ordered partitions) of n into squares that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 3, 0, 0, 7, 6, 0, 0, 14, 10, 4, 0, 22, 20, 10, 0, 32, 39, 20, 0, 49, 70, 42, 0, 12, 116, 88, 0, 128, 156, 174, 11, 207, 3, 320, 0, 333, 551, 575, 0, 555, 914, 0, 0, 959, 1502, 1829, 44, 1691, 2486, 3192, 0, 3000, 4172, 4005
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Examples

			a(21) = 4 because we have [9, 4, 4, 4], [4, 9, 4, 4], [4, 4, 9, 4] and [4, 4, 4, 9].
		

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n) option
          remember; `if`(n=0, 1, add((s->`if`(s>n or irem(m, s)
           =0, 0, b(n-s)))(j^2), j=2..isqrt(n))) end; b(m)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 11 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 75}]

A301503 Number of compositions (ordered partitions) of n into square parts (A000290) such that no two adjacent parts are equal (Carlitz compositions).

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 4, 2, 0, 2, 7, 8, 4, 3, 7, 14, 16, 11, 9, 18, 32, 35, 30, 32, 49, 74, 87, 83, 84, 120, 178, 209, 205, 219, 305, 434, 515, 523, 572, 785, 1080, 1255, 1303, 1488, 2002, 2644, 3058, 3284, 3849, 5077, 6518, 7525, 8319, 9927, 12803, 16051, 18623, 21081
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Examples

			a(10) = 4 because we have [9, 1], [4, 1, 4, 1], [1, 9] and [1, 4, 1, 4].
		

Crossrefs

Programs

  • Mathematica
    nmax = 61; CoefficientList[Series[1/(1 - Sum[x^k^2/(1 + x^k^2), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k^2)/(1 + x^(k^2))).

A331983 Number of compositions (ordered partitions) of n into distinct squares > 1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 8, 0, 0, 0, 0, 2, 0, 1, 0, 6, 0, 2, 2, 0, 0, 0, 8, 0, 0, 0, 7, 6, 0, 2, 2, 24, 0, 6, 0, 2, 0, 0, 8, 6, 0, 1, 32, 0, 0, 2, 6, 6, 0, 0, 2, 32, 0, 0, 12, 30, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(25) = 3 because we have [25], [16, 9] and [9, 16].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`(i*(i+1)*(2*i+1)/6-1n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
        end:
    a:= n-> b(n, isqrt(n), 0):
    seq(a(n), n=0..87);  # Alois P. Heinz, Feb 03 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i(i+1)(2i+1)/6 - 1 < n, 0, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
    a[n_] := b[n, Floor@Sqrt[n], 0];
    a /@ Range[0, 87] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)

A332006 Number of compositions (ordered partitions) of n into distinct centered square numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 2, 6, 0, 1, 2, 6, 24, 0, 2, 6, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 6, 24, 1, 2, 0, 0, 0, 4, 12, 0, 0, 0, 6, 24, 0, 2, 6, 0, 0, 0, 12, 48, 0, 0, 0, 24, 121, 4, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(19) = 6 because we have [13, 5, 1], [13, 1, 5], [5, 13, 1], [5, 1, 13], [1, 13, 5] and [1, 5, 13].
		

Crossrefs

Previous Showing 41-50 of 56 results. Next