cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A302941 Number of total dominating sets in the 2n-crossed prism graph.

Original entry on oeis.org

9, 121, 1296, 14161, 154449, 1684804, 18378369, 200477281, 2186871696, 23855111401, 260219353689, 2838557779204, 30963916217529, 337764520613641, 3684445810532496, 40191139395243841, 438418087537149729, 4782407823513403204, 52168067971110285489
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 (-1)^n + ((11 - 3 Sqrt[13])/2)^n + ((11 + 3 Sqrt[13])/2)^n, {n, 20}] // FullSimplify
    Table[LucasL[n, 3]^2, {n, 20}]
    LucasL[Range[20], 3]^2
    LinearRecurrence[{10, 10, -1}, {9, 121, 1296}, 20]
    CoefficientList[Series[(9 + 31 x - 4 x^2)/(1 - 10 x - 10 x^2 + x^3), {x, 0, 20}], x]
  • PARI
    Vec((9 + 31*x - 4*x^2)/((1 + x)*(1 - 11*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Apr 16 2018

Formula

From Andrew Howroyd, Apr 16 2018: (Start)
G.f.: x*(9 + 31*x - 4*x^2)/((1 + x)*(1 - 11*x + x^2)).
a(n) = 10*a(n-1) + 10*a(n-2) - a(n-3) for n > 3.
a(n) = A006497(n)^2. (End)

Extensions

a(1) and terms a(6) and beyond from Andrew Howroyd, Apr 16 2018

A309852 Array read by antidiagonals: ((z+sqrt(x))/2)^k + ((z-sqrt(x))/2)^k for columns k >= 0 and rows n >= 0, where x = 4*n+1 and y = floor(sqrt(x)) and z = y-1+(y mod 2).

Original entry on oeis.org

2, 1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 9, 3, 2, 1, 7, 27, 11, 3, 2, 1, 11, 81, 36, 13, 3, 2, 1, 18, 243, 119, 45, 15, 5, 2, 1, 29, 729, 393, 161, 54, 25, 5, 2, 1, 47, 2187, 1298, 573, 207, 125, 27, 5, 2, 1, 76, 6561, 4287, 2041, 783, 625, 140, 29, 5, 2
Offset: 0

Views

Author

Charles L. Hohn, Aug 20 2019

Keywords

Comments

One of 4 related arrays (the others being A191347, A191348, and A309853) where the two halves of the main formula approach the integers shown and 0 respectively, and also with A309853 where rows represent various Fibonacci series a(n) = a(n-2)*b + a(n-1)*c where b and c are integers >= 0.

Examples

			Array begins:
  2, 1,  1,   1,    1,    1,     1,      1,       1,       1,        1, ...
  2, 1,  3,   4,    7,   11,    18,     29,      47,      76,      123, ...
  2, 3,  9,  27,   81,  243,   729,   2187,    6561,   19683,    59049, ...
  2, 3, 11,  36,  119,  393,  1298,   4287,   14159,   46764,   154451, ...
  2, 3, 13,  45,  161,  573,  2041,   7269,   25889,   92205,   328393, ...
  2, 3, 15,  54,  207,  783,  2970,  11259,   42687,  161838,   613575, ...
  2, 5, 25, 125,  625, 3125, 15625,  78125,  390625, 1953125,  9765625, ...
  2, 5, 27, 140,  727, 3775, 19602, 101785,  528527, 2744420, 14250627, ...
  2, 5, 29, 155,  833, 4475, 24041, 129155,  693857, 3727595, 20025689, ...
  2, 5, 31, 170,  943, 5225, 28954, 160445,  889087, 4926770, 27301111, ...
  2, 5, 33, 185, 1057, 6025, 34353, 195865, 1116737, 6367145, 36302673, ...
  ...
		

Crossrefs

Row 2 is A000032, row 3 (except the first term) is A000244, row 4 is A006497, row 5 is A206776, row 6 is A172012, row 7 (except the first term) is A000351, row 8 is A087130.

Programs

  • PARI
    T(n, k) = my(x = 4*n+1, y = sqrtint(x), z = y-1+(y % 2)); round(((z+sqrt(x))/2)^k + ((z-sqrt(x))/2)^k);
    matrix(9,9, n, k, T(n-1,k-1)) \\ Michel Marcus, Aug 22 2019
    
  • PARI
    T(n, k) = my(x = 4*n+1, y = sqrtint(x), z=y-1+(y % 2)); v=if(k==0, 2, k==1, z, mapget(m2, n)*((x-z^2)/4) + mapget(m1, n)*z); mapput(m2, n, if(mapisdefined(m1, n), mapget(m1, n), 0)); mapput(m1, n, v); v;
    m1=Map(); m2=Map(); matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 26 2019

Formula

For each row n>=0 let x = 4*n+1, y = floor(sqrt(x)), T(n,0)=2, and T(n,1)=y-1+(y % 2), then for each column k>=2: T(n, k-2)*((x-T(n, 1)^2)/4) + T(n, k-1)*T(n, 1). - Charles L. Hohn, Aug 23 2019

A332060 a(n) = 3*a(n-1) + a(n-2) after initial values a(0..5) = (0, 1, 2, 3, 5, 13).

Original entry on oeis.org

0, 1, 2, 3, 5, 13, 44, 145, 479, 1582, 5225, 17257, 56996, 188245, 621731, 2053438, 6782045, 22399573, 73980764, 244341865, 807006359, 2665360942, 8803089185, 29074628497, 96026974676, 317155552525, 1047493632251, 3459636449278, 11426402980085
Offset: 0

Views

Author

M. F. Hasler, Mar 04 2020

Keywords

Comments

These numbers arise as borders of intervals [a(n), a(n+1)] = [b(k)=k, b(m)=m] with m := b(k) + b(k-1) after the "holes" between the borders have been filled according to b(k+1) = b(k) + b(m) and b(m-1) = b(k+1) + b(n) for any such interval of length m - k > 2, i.e., starting from k = 5, m = 13.
The initial terms correspond to intervals of length <= 2 with only 0 or 1 "holes" to fill: In the first case we have the same recursion rule as for the Fibonacci sequence, and when there's one hole (between 3 and 5) the next Fibonacci number b(k+1) = b(k) + b(m) = 3 + 5 = 8 gets filled in there, and the next border is m = b(k) + b(k-1) = 5 + 8 = 13. See Example for more.

Examples

			The initial a(0) is conventional. (One could also choose a(0) = 1 to have a(2) = a(1) + a(0) as for the next two terms, but this wouldn't correspond to b(m) = b(k) + b(k-1), either.)
We start with [a(1), a(2)] = [1, 2].
No gap or "hole" here to fill, so the next interval [a(2), a(3)] has upper bound a(3) = a(2) + 1 = 3, where 1 is the element just left to the right border a(2).
Again, no gap or hole to fill in [2, 3], so the next interval has upper bound a(4) = a(3) + 2 = 5, where 2 is the element just left to the right border a(3).
Now there's a hole in (3, 5), at position 4, which is filled with 3 + 5 = 8, so the next upper bound is a(5) = a(4) + 8 = 5 + 8 = 13: here the number 8 was the element left to the right border 5.
Now there are several holes in (5, 13). The leftmost one (position 6) is filled with 5 + 13 = 18, and the rightmost (position 12) is filled with 18 + 13 = 31. So the next interval [a(5), a(6)] has upper bound a(6) = a(5) + 31 = 44.
		

Crossrefs

Cf. A000045 (Fibonacci numbers F(n+1) = F(n) + F(n-1)); A006190, A052924, A006497 (a(n+1) = 3*a(n) + a(n-1)); A000129 (Pell numbers a(n+1) = 2*a(n) + a(n-1)).

Programs

  • PARI
    for(n=1+#a=[0,1,2,3,5,13],#a=Vec(a,30),a[n]=a[n-1]*3+a[n-2]);a \\ Remove initial 0 to get a[1] = 1 etc.
    apply( {A332060(n)=if(n>3,[5,13]*([0,1;1,3]^(n-4))[,1],n)}, [0..20])

Formula

G.f.: x*(1 - x - 4*x^2 - 6*x^3 - 5*x^4)/(1 - 3*x - x^2).

A338078 Odd composite integers m such that A085447(m) == 6 (mod m).

Original entry on oeis.org

57, 185, 385, 481, 629, 721, 779, 1121, 1441, 1729, 2419, 2737, 5665, 6721, 7471, 8401, 9361, 10465, 10561, 11285, 11521, 11859, 12257, 13585, 14705, 15281, 16321, 16583, 18849, 24721, 25345, 25441, 25593, 30745, 33649, 35219, 36481, 36581, 37949, 38665, 39169
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

If p is a prime, then A085447(p)==6 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=6, b=-1, V(m) recovers A085447(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4), A335671 (a=5).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 6] - 6, #] &]

Extensions

More terms from Amiram Eldar, Oct 09 2020

A338079 Odd composite integers m such that A086902(m) == 7 (mod m).

Original entry on oeis.org

25, 51, 91, 161, 265, 325, 425, 561, 791, 1105, 1113, 1325, 1633, 1921, 1961, 2001, 2465, 2599, 2651, 2737, 3445, 4081, 4505, 4929, 7345, 7685, 8449, 9361, 10325, 10465, 10825, 11285, 11713, 12025, 12291, 13021, 15457, 17111, 18193, 18881, 18921, 19307
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

If p is a prime, then A086902(p)==7 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=7, b=-1, V(m) recovers A086902(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4), A335671 (a=5), A338078 (a=6).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 7] - 7, #] &]
Previous Showing 41-45 of 45 results.