cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A068471 Number of n X n binary matrices with each 1 having at most 2 adjacent 1's.

Original entry on oeis.org

1, 2, 16, 378, 30824, 8402216, 7664347268, 23371379782671, 238225926162821893, 8118262028301675826132, 924887563235974860108746534, 352261845112790535941917078458268
Offset: 0

Views

Author

R. H. Hardin, Mar 10 2002

Keywords

Crossrefs

No adjacent 1's A006506, one adjacent 1 A067968.

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 26 2024

A201222 Number of ways to place k non-attacking knights on a 2 X n horizontal cylinder, summed over all k>=0.

Original entry on oeis.org

3, 9, 18, 81, 123, 324, 843, 2401, 5778, 15129, 39603, 104976, 271443, 710649, 1860498, 4879681, 12752043, 33385284, 87403803, 228886641, 599074578, 1568397609, 4106118243, 10750371856, 28143753123, 73681302249, 192900153618, 505022001201, 1322157322203
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[Mod[n,4]==0,LucasL[n/2]^4,LucasL[2n]+1+(-1)^n],{n,1,50}]

A283161 Natural numbers whose digits can be formed by typing non-adjacent keys on a 123-456-789 keypad without repeating a digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 16, 17, 18, 19, 24, 26, 27, 28, 29, 31, 34, 35, 37, 38, 39, 42, 43, 46, 48, 49, 51, 53, 57, 59, 61, 62, 64, 67, 68, 71, 72, 73, 75, 76, 79, 81, 82, 83, 84, 86, 91, 92, 93, 94, 95, 97, 135, 137, 138, 139, 153, 157, 159, 167, 168, 173, 175, 176, 179, 183, 186, 193, 195
Offset: 1

Views

Author

FUNG Cheok Yin, Mar 02 2017

Keywords

Comments

Or say numbers which are "very difficult" to be typed on a keypad without the zero. (See description of A215009.)

Examples

			The keypad is:
+-----+
|1|2|3|
+-+-+-+
|4|5|6|
+-+-+-+
|7|8|9|
+-+-+-+
It is visibly obvious that 168 can be formed on the keypad, and each pairwise digits of 168 are not adjacent.
		

Crossrefs

Programs

  • Mathematica
    no = IntegerDigits @ {12,14,23,25,34,36,45,47,56,58,69,78,89}; Sort[ FromDigits /@ Flatten[ Permutations /@ Select[ Subsets[ Range@ 9, {1, 9}], Intersection[ Subsets[#, {2}], no] == {} &], 1]] (* Giovanni Resta, Apr 06 2017 *)

A350336 Number of n X n ternary matrices with no two adjacent 0's.

Original entry on oeis.org

1, 3, 56, 7504, 6832640, 42780151808, 1836366011301888, 540795841280638713856, 1092417949346109029345132544, 15137179876232766647722798101823488, 1438787206346713875314130065804001328234496, 938091111277955250977701268973340995182098116509696
Offset: 0

Views

Author

Robert P. P. McKone, Jan 03 2022

Keywords

Comments

A two-dimensional generalization of A028859.
2^(n^2) < a(n) < 3^(n^2).

Examples

			a(1) is trivial because all 3 1 X 1 matrices have no 2 adjacent 0's, whereas for a(2) the 56 matrices are:
  {
    {{0, 1}, {1, 0}}, {{0, 1}, {1, 1}},
    {{0, 1}, {1, 2}}, {{0, 1}, {2, 0}},
    {{0, 1}, {2, 1}}, {{0, 1}, {2, 2}},
    {{0, 2}, {1, 0}}, {{0, 2}, {1, 1}},
    {{0, 2}, {1, 2}}, {{0, 2}, {2, 0}},
    {{0, 2}, {2, 1}}, {{0, 2}, {2, 2}},
    {{1, 0}, {0, 1}}, {{1, 0}, {0, 2}},
    {{1, 0}, {1, 1}}, {{1, 0}, {1, 2}},
    {{1, 0}, {2, 1}}, {{1, 0}, {2, 2}},
    {{1, 1}, {0, 1}}, {{1, 1}, {0, 2}},
    {{1, 1}, {1, 0}}, {{1, 1}, {1, 1}},
    {{1, 1}, {1, 2}}, {{1, 1}, {2, 0}},
    {{1, 1}, {2, 1}}, {{1, 1}, {2, 2}},
    {{1, 2}, {0, 1}}, {{1, 2}, {0, 2}},
    {{1, 2}, {1, 0}}, {{1, 2}, {1, 1}},
    {{1, 2}, {1, 2}}, {{1, 2}, {2, 0}},
    {{1, 2}, {2, 1}}, {{1, 2}, {2, 2}},
    {{2, 0}, {0, 1}}, {{2, 0}, {0, 2}},
    {{2, 0}, {1, 1}}, {{2, 0}, {1, 2}},
    {{2, 0}, {2, 1}}, {{2, 0}, {2, 2}},
    {{2, 1}, {0, 1}}, {{2, 1}, {0, 2}},
    {{2, 1}, {1, 0}}, {{2, 1}, {1, 1}},
    {{2, 1}, {1, 2}}, {{2, 1}, {2, 0}},
    {{2, 1}, {2, 1}}, {{2, 1}, {2, 2}},
    {{2, 2}, {0, 1}}, {{2, 2}, {0, 2}},
    {{2, 2}, {1, 0}}, {{2, 2}, {1, 1}},
    {{2, 2}, {1, 2}}, {{2, 2}, {2, 0}},
    {{2, 2}, {2, 1}}, {{2, 2}, {2, 2}}
  }
		

Crossrefs

Cf. A006506 for binary version.
Cf. A028859 for one-dimensional version.

Programs

  • Mathematica
    t[m_] := t[m] = Map[ArrayReshape[#, {m, m}] &, Tuples[{0, 1, 2}, m^2]];a[m_] := a[m] = Count[Table[AnyTrue[Flatten[{Table[Equal[0, t[m][[n, a, b]], t[m][[n, a, b + 1]]], {a, 1, m}, {b, 1, m - 1}], Table[Equal[0, t[m][[n, a, b]], t[m][[n, a + 1, b]]], {a, 1, m - 1}, {b, 1, m}]}], TrueQ], {n, 1, 3^(m^2)}], False]; Table[a[n], {n, 1, 3}]

Extensions

Terms a(5)-a(11) from Andrew Howroyd, Jan 04 2022

A381857 Number of n X n binary matrices with at least 2 adjacent 1's.

Original entry on oeis.org

0, 0, 9, 449, 64302, 33498985, 68713877875, 562948673292362, 18446743413061588661, 2417851638458709952150645, 1267650600226199352445557225326, 2658455991569819662405962686908743173, 22300745198530622979053904922855772969397419
Offset: 0

Views

Author

Benjamin Ghitterman, Mar 08 2025

Keywords

Comments

Use black and white square tiles to fill an n X n grid. In some combinations, a black tile will share a side with another black tile. This sequence counts the number of arrangements containing at least one black tile sharing a side with another black tile.

Examples

			For n=1, there are no arrangements with two black tiles touching as there is only space for one tile.
n=2 is a 2 X 2 grid, and there are 9 possible arrangements where at least two black tiles touch on an edge:
  00  01  10  11  01  10  11  11  11
  11, 01, 10, 00, 11, 11, 01, 10, 11.
n=3 is a 3 X 3 grid, and with 2^9=512 possible combinations of black and white tiles, 449 of them have at least two black tiles touching.
		

Crossrefs

Formula

a(n) = 2^(n^2) - A006506(n).

A383255 Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's.

Original entry on oeis.org

1, 4, 194, 107080, 672498596, 48104236145168, 39202958861329453384, 364022757339778569993689888, 38513979937284562006371342202842000, 46429021191757554279412904483559912259714112, 637737721080296383894709847744103523361428384973270816
Offset: 0

Views

Author

John Tyler Rascoe, Apr 20 2025

Keywords

Comments

These are matrices with no [0,1] or [3] submatrices.
[2]

Examples

			The 3 X 3 matrices below are counted under a(3) = 107080:
 [0,0,0] [1,0,2] [2,3,2]
 [0,0,0] [1,0,3] [3,3,3]
 [0,0,0],[0,2,3],[3,3,3].
		

Crossrefs

Programs

  • Python
    # see links

Formula

a(n) <= A060757(n).

Extensions

a(5)-a(10) from Bert Dobbelaere, Apr 23 2025

A068472 Number of n X n binary matrices with every 1 having at most 3 adjacent 1's.

Original entry on oeis.org

1, 2, 16, 496, 58640, 26536192, 45851039232, 302758305892480, 7638804476736307712, 736437724731312162567680, 271287639195997221896855543808, 381862430868672544566361613406502912
Offset: 0

Views

Author

R. H. Hardin, Mar 10 2002

Keywords

Crossrefs

No adjacent 1's A006506, one adjacent 1 A067968.

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 26 2024
Previous Showing 31-37 of 37 results.