cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A015898 Numbers k such that k | 9^k + 9.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 18, 30, 90, 123, 730, 7086, 172426, 300243, 372390, 449674, 1812298, 5027914, 5307130, 17214354, 20788426, 84929451, 101992426, 102177370, 103544442, 106494770, 161388338, 181327546, 193710249, 207083626
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Mod[PowerMod[9, #, #] + 9, #] == 0 &] (* Giovanni Resta, Oct 23 2018 *)

Extensions

Missing a(2)-a(4) from Giovanni Resta, Oct 23 2018

A015902 Numbers k such that k | 10^k + 10.

Original entry on oeis.org

1, 2, 5, 10, 22, 70, 110, 130, 154, 190, 286, 365, 685, 910, 2002, 2794, 2926, 6526, 9730, 15862, 17290, 24130, 50005, 59158, 60346, 68926, 72010, 131326, 163306, 278278, 313045, 478126, 525790, 552370, 618046, 642874, 883246
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Mod[PowerMod[10, #, #] + 10, #] == 0 &] (* Giovanni Resta, Oct 23 2018 *)

Extensions

Missing a(2)-a(3) from Giovanni Resta, Oct 23 2018

A015904 Numbers k such that k | 12^k + 12.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 15, 26, 28, 52, 76, 78, 87, 156, 364, 435, 532, 988, 2356, 3052, 5356, 6916, 7588, 10095, 11476, 13636, 15051, 15964, 16458, 24388, 31996, 36114, 40132, 42484, 46396, 50428, 50726, 72436, 114846, 132652, 148276, 171076, 208468
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Mod[PowerMod[12, #, #] + 12, #] == 0 &] (* Giovanni Resta, Oct 23 2018 *)

Extensions

Missing a(2)-a(5) from Giovanni Resta, Oct 23 2018

A015905 Numbers k such that k | 13^k + 13.

Original entry on oeis.org

1, 2, 13, 14, 26, 182, 286, 2626, 2926, 8866, 10186, 57226, 62686, 118378, 185653, 187838, 284662, 396526, 689546, 792946, 927706, 1110214, 1140686, 1501526, 1943266, 2034406, 2402686, 2427706, 2759926, 3032926, 4450706, 6586426, 6849766, 7319026, 9357518
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[13 + PowerMod[13, #, #], #] == 0 &] (* Giovanni Resta, Oct 21 2018 *)

Extensions

Missing a(2) and a(33)-a(35) from Giovanni Resta, Oct 21 2018

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A115976 Numbers k that divide 2^(k-2) + 1.

Original entry on oeis.org

1, 3, 49737, 717027, 9723611, 21335267, 32390921, 38999627, 43091897, 86071337, 101848553, 102361457, 228911411, 302948067, 370219467, 393664027, 455781089, 483464027, 1040406177, 1272206987, 2371678553, 2571052241, 2648052857, 3054713937, 3597613307, 3782971499, 3917903851, 4005163577, 5419912241
Offset: 1

Views

Author

Max Alekseyev, Mar 15 2006

Keywords

Comments

Some larger terms: 4465786944074559659, 1440261542571735083956640176981881665928575750093930787551969

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ PowerMod[2, 2n - 3, 2n - 1] == 2n - 2, AppendTo[lst, 2n - 1]], {n, 10^9}]; lst (* Robert G. Wilson v, Apr 04 2006 *)

Extensions

More terms from Robert G. Wilson v, Apr 04 2006
Terms a(24) onward from Max Alekseyev, Feb 03 2015
b-file corrected and extended by Max Alekseyev, Oct 27 2018

A219037 Numbers k such that k divides 2^k + 2 and (k-1) divides 2^k + 1.

Original entry on oeis.org

2, 6, 66, 73786976294838206466
Offset: 1

Views

Author

Max Alekseyev, Nov 10 2012

Keywords

Comments

Also, numbers k such that 2^k == k-2 (mod k*(k-1)).
The sequence is infinite: if m is in this sequence, then so is 2^m + 2.
No other terms below 10^20.

References

  • W. Sierpinski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #18.

Crossrefs

Intersection of A006517 and A055685.

Formula

Conjecture: a(n+1) = 2^a(n) + 2 for all n.

A319222 Numbers k such that k divides 2^(2k+1) + 1.

Original entry on oeis.org

1, 3, 129, 2537, 51889, 101617, 226873, 270427, 653467, 945667, 1740979, 5819937, 6520987, 9828587, 15452867, 24950857, 51377539, 89519449, 108627601, 135776371, 160126609, 296338873, 310026163, 400431289, 641706243, 643359937, 678257563, 803419697, 902661523, 952431331, 1004273987, 1243893697, 1796055907
Offset: 1

Views

Author

Altug Alkan, Sep 13 2018

Keywords

Comments

Also, numbers k such that 4^k == -1/2 (mod k) (cf. A296369). - Max Alekseyev, Sep 15 2018
If k is in the sequence, and m is another divisor of 2^(2*k+1)+1 and is coprime to k, then m*k is in the sequence. - Robert Israel, Sep 14 2018

Crossrefs

Programs

  • Maple
    filter:= n -> 2 &^ (2*n+1)+1 mod n = 0:
    select(filter, [$1..10^7]); # Robert Israel, Sep 14 2018
  • PARI
    is_A319222(n) = Mod(2, n)^(2*n+1)==-1;

A370578 Numbers k such that k + 1 divides 3^k + 1.

Original entry on oeis.org

0, 1, 3, 27, 531, 1035, 4635, 6363, 11475, 19683, 40131, 80955, 266475, 280755, 307395, 356643, 490371, 544347, 557955, 565515, 572715, 808227, 1256355, 1695483, 1959075, 1995075, 2771595, 2837835, 3004155, 3208491, 3337635, 3886443, 4670955, 5619411, 6434595, 6942817
Offset: 1

Views

Author

Akiva Weinberger, Feb 22 2024

Keywords

Comments

The sequence is infinite. It contains all numbers of the form 3^(3^m).
After 3, the smallest term that is not a multiple of 9 is a(13) = 266475.
After 1, the smallest term that is not a multiple of 3 is a(36) = 6942817.
After 1, the smallest term that is not 3 (mod 8) is, also, a(36) = 6942817.
No term can be 2 (mod 3). Proof: Otherwise, k + 1 would be a multiple of 3 while 3^k + 1 would not.
All terms after 0 are odd. Proof: Suppose k is even, so that k+1 is odd. Let p be a prime factor of k+1. Then (by definition of k) 3^k == -1 (mod p) and 3^(2k) == 1 (mod p), so the order of 3 (mod p) divides 2k but not k. Thus the order of 3 is a multiple of 2^(v_2(k)+1) where v_2(k) = A007814(k) is the exponent of 2 in the prime factorization of k. But 3^(p-1) == 1 (mod p) by Fermat's little theorem, so p == 1 (mod 2^(v_2(k)+1)). Multiplying this for all prime factors p of k+1 gives k+1 == 1 (mod 2^(v_2(k)+1)), or k == 0 (mod 2^(v_2(k)+1)). But this contradicts the definition of v_2.
Apart from 0, the only possible residues mod 72 are 1, 3, 13, 25, 27, 37, 49, 51, and 61. It is conjectured that all appear eventually. (See John Omielan's answer to the author's question on Mathematics Stack Exchange.)
Empirically, approximately 80% of the terms are 27 (mod 72).

Examples

			(3^27+1)/(27+1) is an integer, so 27 is in the sequence. This can be shown efficiently using a modular exponentiation algorithm to find 3^27 mod 28.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,7000000],TrueQ[PowerMod[3,#,#+1]==#]&] (* James C. McMahon, Feb 25 2024 *)
  • Python
    for n in range(100_000_000):
      if (pow(3,n,n+1)==n):
        print(n)
Previous Showing 11-20 of 21 results. Next