cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-108 of 108 results.

A108905 Engel series expansion for Sierpinski's constant.

Original entry on oeis.org

1, 1, 2, 6, 51, 114, 136, 149, 1388, 3654, 3961, 41614, 2975365, 4120126, 5760908, 11210809, 21235067, 43239302, 156258546, 230627452, 595763433, 4709180601, 148918280487, 841708059551, 2895551449652, 5660433533409, 6575950336213
Offset: 0

Views

Author

Hauke Worpel (hw1(AT)email.com), Jul 17 2005

Keywords

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[ Array[ 1 &, Floor[ A]], First @ Transpose @ NestList[{Ceiling[ 1/Expand[ #[[1]] #[[2]] -1]], Expand[ #[[1]] #[[2]] -1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1]]; EngelExp[ N[ Pi(-Log[Pi] + 2EulerGamma + 4LogGamma[3/4]), 2^8], 25] (* Robert G. Wilson v *)

Extensions

a(11) - a(26) from Robert G. Wilson v, Jul 21 2005

A130818 Decimal expansion of number whose Engel expansion is the sequence of squares, that is, 1, 4, 9, 16,...

Original entry on oeis.org

1, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			1.2795853023360672674372044408115333532858411...
		

References

  • F. Engel "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

Formula

Equal to Sum_{n>=1} 1/n!^2 or BesselI(0,2) - 1. - Gerald McGarvey, Nov 12 2007
Equals A070910 - 1. - R. J. Mathar, Jun 13 2008

A161559 Engel expansion of tan(1/2).

Original entry on oeis.org

2, 11, 54, 136, 1473, 3483, 36244, 41086, 305728, 379955, 582669, 4540387, 5020443, 22096761, 24228660, 48364856, 178868536, 234516235, 524137295, 1096104266, 11627672572, 19828856452, 31372689367, 47247829739, 701124643395
Offset: 1

Views

Author

Keywords

Examples

			A161011 = 0.546302.... = 1/2+1/(2*11)+1/(2*11*54)+1/(2*11*54*136)+ ...
		

Crossrefs

Cf. A006784.

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/ Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])], A-Floor[A]},n-1]]; EngelExp[N[Tan[1/2],6! ],50]

Extensions

Example added by R. J. Mathar, Oct 04 2009

A185443 Engel expansion of A060997 = 1.433127...

Original entry on oeis.org

1, 3, 4, 6, 6, 10, 10, 10, 21, 66, 207, 722, 6563, 25007, 372733, 2028763, 5472218, 41430101, 75142985, 192675195, 201216921, 925285050, 935598827, 2288358581, 2346034092, 26271379744, 41588896504, 152594692251, 529451874660
Offset: 1

Views

Author

Jani Melik, Feb 04 2011

Keywords

Crossrefs

Cf. A006784.

Programs

  • Maple
    Digits := 5000:
    a0 := evalf(BesselI(0,2)/BesselI(1,2)):
    f1 := proc(n) local i, an, u, a:
    an := [ ]:
    u := n:
    for i from 1 to 30 do
       a := ceil(1/u):
       an := [ op(an), a ]:
       u := u * a - 1:
    od:
    RETURN (an): end:  f1(a0);
  • PARI
    CFB(v)={ \\ converts a continued fraction to a number
    my(x=v[#v]*1.);
    forstep(i=#v-1,1,-1,
    x = v[i] + x^-1;
    );
    x
    };
    Engel(x)={
    my(v=List(),t);
    while(1,
    trap(,
    return(Vec(v))
    ,
    t = ceil(1/x)
    );
    listput(v,t);
    x = (x * t) - 1
    )
    };
    \p 500
    Engel(CFB(vector(500,i,i)))

Extensions

gp script from Charles R Greathouse IV, Feb 06 2011

A278765 Engel expansion of natural logarithm of golden ratio.

Original entry on oeis.org

3, 3, 4, 4, 4, 6, 15, 48, 118, 147, 671, 1026, 3075, 44641, 48364, 1868380, 75080506, 96848501, 911582093, 2511879981, 8700005050, 15888441652, 108526838262, 446779835336, 632466801279, 1084794852728, 1184722346307, 1657692322844, 12376968750845, 17341469111712, 27996895637798, 38935285631573
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Examples

			log(phi)  = 0.4812118250596... = 1/3 + 1/(3*3) + 1/(3*3*4) + 1/(3*3*4*4) + 1/(3*3*4*4*4) + 1/(3*3*4*4*4*6) + ...
		

Crossrefs

Cf. A006784 (for definition of Engel expansion).

Programs

  • Mathematica
    EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[Log[GoldenRatio], 7! ], 40]

A278766 Engel expansion of plastic constant (real root of x^3 - x - 1).

Original entry on oeis.org

1, 4, 4, 6, 6, 27, 74, 86, 372, 853, 947, 1475, 3686, 9084, 19174, 30737, 1530833, 2401466, 2521253, 3649563, 3802245, 9320024, 1092256819, 2114664794, 2878948610, 8842525055, 13769551820, 26996892389, 215947176106, 269439735691, 13694290818678, 18312336654245, 19649485782723, 63266709043539
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Examples

			(1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.324717957244... = 1/1 + 1/(1*4) + 1/(1*4*4) + 1/(1*4*4*6) + 1/(1*4*4*6*6) + 1/(1*4*4*6*6*27) + ...
		

Crossrefs

Cf. A006784 (for definition of Engel expansion).

Programs

  • Mathematica
    EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[(1/2 + Sqrt[23/108])^(1/3) + (1/2 - Sqrt[23/108])^(1/3), 7! ], 40]

A279627 Engel expansion of the Glaisher-Kinkelin constant A074962.

Original entry on oeis.org

1, 4, 8, 27, 59, 188, 384, 427, 2525, 71429, 80727, 357492, 13200877, 65161876, 7439912342, 15555881542, 71559279848, 116275866868, 345574982189, 737460049244, 9183275685671, 12641946167319, 126181443702371
Offset: 1

Views

Author

Benedict W. J. Irwin, Dec 16 2016

Keywords

Comments

See A006784 for more details on the Engel expansion.

Examples

			1.2824271291006... = 1/1 + 1/(1*4) + 1/(1*4*8) + 1/(1*4*8*27) + ...
		

Crossrefs

Cf. A074962.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]];
    EngelExp[Glaisher, 22]

A346801 Engel expansion of A249270 = lim_{n->oo} (1/n)*Sum_{k=1..n} smallest prime not dividing k.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 13, 18, 160, 162, 1421, 1745, 6097, 6348, 15474, 65948, 103608, 366088, 573005, 1048188, 1138953, 3410520, 6376825, 279823002, 306445433, 1082288597, 1489247033, 2533043524, 5591690612, 8082600305, 22159965172, 62442143259, 70275959860
Offset: 1

Views

Author

Corey Clemons, Aug 04 2021

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Crossrefs

Extensions

More terms from Alois P. Heinz, Aug 04 2021
Previous Showing 101-108 of 108 results.