cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 108 results. Next

A059197 Engel expansion of Pi^e = 22.4592.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 8, 17, 111, 236, 419, 2475, 3741, 4123, 5563, 5622, 18000, 33641, 42744, 130605, 696987, 975174, 1034590, 2806140, 14026897, 14137435, 65788323, 73121589, 229261119
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A059850.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Pi^E, 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A059199 Engel expansion of e^gamma (gamma is the Euler-Mascheroni constant A001620) = 1.78107.

Original entry on oeis.org

1, 2, 2, 9, 9, 15, 84, 256, 278, 819, 1734, 6500, 10004, 20116, 26612, 31762827, 181599789, 981641086, 1698644383, 1987894743, 5557385559, 11998593788, 12646182115, 70932754473, 106473857370, 527311590750
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A073004.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[E^EulerGamma, 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A067913 Engel expansion of Riemann zeta(5)=sum(i>0,1/i^5).

Original entry on oeis.org

1, 28, 30, 52, 231, 277, 523, 2278, 22749, 48854, 371305, 1447522, 1726931, 1947729, 3657998, 6964377, 14393316, 101963994, 237690542, 487815056, 1525407389, 2636206007, 14146907176, 2348836787752, 5367069498863, 1710637374747486
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

A067921 Engel expansion of sqrt(Pi/2).

Original entry on oeis.org

1, 4, 76, 134, 213, 1649, 1955, 2041, 32363, 217167, 760577, 1633080, 6412486, 24932290, 25544312, 376841489, 426956719, 472747939, 765965856, 2708004694, 5814287795, 14630348817, 21857959576, 92077240148, 184486528542
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; EngelExp[N[Sqrt[Pi/2], 7!], 50] (* G. C. Greubel, Jan 12 2017 *)
  • PARI
    s=sqrt(asin(1)); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );

A068388 Engel expansion of sqrt(3/2).

Original entry on oeis.org

1, 5, 9, 9, 47, 54, 171, 867, 3056, 28687, 133134, 542005, 563497, 1046686, 1955619, 2057281, 42760619, 661780137, 1109113993, 6460565976, 8523453296, 34406061218, 64402180149, 1607033374515, 10943963720662, 124655149151970
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

Programs

  • PARI
    print1(1, ", "); s=(3/2)^(1/2); for(i=0,30,s=s*ceil(1/s)-1; print1(ceil(1/s),", "));

A091832 Pierce expansion of 1/e^2.

Original entry on oeis.org

7, 18, 19, 136, 349, 357, 1354, 6996, 7135, 9531, 11558, 15996, 17432, 52118, 151048, 427802, 821834, 877819, 972918, 1046690, 1540789, 3653077, 8200738, 9628573, 164153335, 5607624822, 86457467082, 141885251873, 151882622551
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2004

Keywords

Comments

If u(0) = exp(1/m) with m an integer >= 1 and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n.

Crossrefs

Cf. A006784 (Pierce expansion definition), A059194.

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/E^2, 7!], 15] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    default(realprecision, 100000); r=exp(2); for(n=1, 100, s=(r/(r-floor(r))); print1(floor(r), ", "); r=s) \\ Benoit Cloitre [amended by Georg Fischer, Nov 20 2020]

Formula

Let u(0) = exp(2) and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n) = floor(u(n)).
1/e^2 = 1/a(1) - 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) - 1/(a(1)*a(2)*a(3)*a(4)) ...
Limit_{n->oo} a(n)^(1/n) = e.

Extensions

a(1)=7 inserted by Georg Fischer, Nov 20 2020

A091833 Pierce expansion of 1/zeta(2).

Original entry on oeis.org

1, 2, 4, 7, 22, 29, 51, 173, 210, 262, 417, 746, 12341, 207220, 498538, 1286415, 2351289, 3702952, 7664494, 54693034, 75971438, 269954954, 6674693008, 13449203581, 59799655308, 98912303039, 948887634688, 3557757020909, 5898230078743
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2004

Keywords

Comments

If u(0) = exp(1/m), m integer >= 1, and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n.

Crossrefs

Cf. A006784 (Pierce expansion definition), A059186.

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/Zeta[2], 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    default(realprecision, 100000); r=zeta(2); for(n=1, 100, s=(r/(r-floor(r))); print1(floor(r), ", "); r=s) \\ Benoit Cloitre [amended by Georg Fischer, Nov 20 2020]

Formula

Let u(0) = Pi^2/6 and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x; then a(n) = floor(u(n)).
1/zeta(2) = 1/a(1) - 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) - 1/(a(1)*a(2)*a(3)*a(4)) ...
Limit_{n->oo} a(n)^(1/n) = e.

Extensions

a(1)=1 inserted by Georg Fischer, Nov 20 2020

A091846 Pierce expansion of log(2).

Original entry on oeis.org

1, 3, 12, 21, 51, 57, 73, 85, 96, 1388, 4117, 5268, 9842, 11850, 16192, 19667, 29713, 76283, 460550, 1333597, 1462506, 9400189, 13097390, 30254851, 190193800, 201892756, 431766247, 942050077, 6204785761, 16684400052, 23762490104
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2004

Keywords

Comments

If u(0)=exp(1/m) m integer>=1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n.

Crossrefs

Cf. A006784 (Pierce expansion definition), A059180.

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Log[2], 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    r=1/log(2);for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))

Formula

Let u(0)=1/log(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)).
log(2) = 1/a(1) - 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) - 1/(a(1)*a(2)*a(3)*a(4)) +- ...
limit n-->infinity a(n)^(1/n) = e.

A137507 a(n) = 100^[n/10] + 2*n*10^[n/10]: inspired by Engel expansion of Pi.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 14000, 14200, 14400, 14600, 14800, 15000, 15200, 15400, 15600, 15800, 1060000, 1062000, 1064000, 1066000, 1068000, 1070000, 1072000, 1074000, 1076000, 1078000, 100800000, 100820000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006784.

Programs

  • Mathematica
    Table[100^(Floor[n/10]) + 2*n*10^(Floor[n/10]), {n,0,50}] (* G. C. Greubel, Feb 23 2017 *)
  • PARI
    a(n) = (n + 10^(floor(n/10)))^2 - n^2;
    
  • PARI
    vector(30,n, n--; 2*n*10^(n\10) + 100^(n\10)) \\ M. F. Hasler, May 02 2008
    
  • Sage
    [(n + 10^(floor(n/10)))^2 - n^2 for n in range(0,42)] # Stefano Spezia, Apr 16 2025

Extensions

Edited by M. F. Hasler and N. J. A. Sloane, May 02 2008

A232326 Pierce expansion of 1 to the base Pi.

Original entry on oeis.org

3, 69, 310, 1017, 36745, 214369, 966652, 11159821, 74039764, 550021544, 4481549430, 16543857917, 87205978613, 476981856953, 30989048525367, 203786458494160, 711639924282497, 3174772986229899, 29814569078896025, 100158574806804154
Offset: 0

Views

Author

Peter Bala, Nov 26 2013

Keywords

Comments

Let r and b be positive real numbers. We define a Pierce expansion of r to the base b to be a (possibly infinite) increasing sequence of positive integers [a(0), a(1), a(2), ...] such that we have the alternating series representation r = b/a(0) - b^2/(a(0)*a(1)) + b^3/(a(0)*a(1)*a(2)) - .... Depending on the values of r and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 and 0 < r < 1 we recover the ordinary Pierce expansion of r.
See A058635, A192223 and A230600 for some predictable Pierce expansions to a base b other than 1.
In the particular case that the base b >= 1 and 0 < r < b then we can find a Pierce expansion of r to the base b as follows:
Define the map f(x) (which depends on the base b) by f(x) = x/b*ceiling(b/x) - 1 and let f^(n)(x) denote the n-th iterate of the map f(x), with the convention that f^(0)(x) = x.
For n = 0,1,2,... define a(n) = ceiling(b/f^(n)(-r)) until f^n(-r) = 0.
Then it can be shown that the sequence of positive integers |a(n)| is a Pierce expansion of r to the base b.
For the present sequence we apply this algorithm with r := 1 and with base b := Pi. See A232325 for an Engel expansion of 1 to the base Pi.

Crossrefs

Programs

  • Maple
    # Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
    map_iterate := proc(n,b,x) option remember;
    if n = 0 then
       x
    else
       -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
    end if
    end proc:
    # Define the (signed) terms of the expansion of x to the base b
    a := n -> ceil(evalf(b/map_iterate(n,b,x))):
    Digits:= 500:
    # Choose values for x and b
    x := -1: b:= Pi:
    seq(abs(a(n)), n = 0..19);

Formula

a(n) = ceiling(Pi/f^(n)(-1)), where f^(n)(x) denotes the n-th iterate of the map f(x) = x/Pi*ceiling(Pi/x) - 1, with the convention that f^(0)(x) = x.
Pierce series expansion of 1 to the base Pi:
1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + ....
The associated power series F(z) := 1 - ( z/3 - z^2/(3*69) + z^3/(3*69*310) - z^4/(3*69*310*1017) + ...) has a zero at z = Pi. Truncating the series F(z) to n terms produces a polynomial F_n(z) with rational coefficients which has a real zero close to Pi.
Previous Showing 61-70 of 108 results. Next