cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A064065 n-th step is to add a(n) to each previous number a(k) (excluding itself, i.e., k < n) to produce n more terms of the sequence, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 5, 4, 5, 5, 5, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 6, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 4, 2, 3, 3, 3, 4, 3, 4, 4, 4, 5, 5, 5, 3, 2, 3, 3, 3, 4, 3, 4, 4, 4, 5, 5, 5
Offset: 0

Views

Author

Henry Bottomley, Aug 31 2001

Keywords

Comments

Each positive number appears an infinite number of times: e.g., a(k)=1 whenever k-1 is in A006894.

Examples

			Start with (0,1). So after initial step have (0, *1*, 0+1 = 1), then (0, 1, *1*, 0+1 = 1, 1+1 = 2), then (0, 1, 1, *1*, 2, 0+1 = 1, 1+1 = 2, 1+1 = 2), then (0, 1, 1, 1, *2*, 1, 2, 2, 0+2 = 2, 1+2 = 3, 1+2 = 3, 1+2 = 3), etc.
		

Crossrefs

A356082 Matula-Goebel number of the complete binary tree of n levels.

Original entry on oeis.org

1, 4, 49, 51529, 400034745289, 135016053798647886015597889
Offset: 1

Views

Author

Kevin Ryde, Jul 26 2022

Keywords

Comments

An estimate for a(7) is 7.304058*10^55. - Hugo Pfoertner, Jul 26 2022

Examples

			For n=3, the complete binary tree of 3 levels is
        49
      /    \     a(3) = prime(4)^2
    4       4         = 49
   / \     / \
  1   1   1   1
		

Crossrefs

Cf. A006894 (Colijn-Plazzotta), A084107 (balanced binary).
Cf. A356083 (ternary), A356084 (quaternary).

Programs

  • PARI
    a(n) = my(ret=1); for(i=2,n, ret=prime(ret)^2); ret;

Formula

a(n) = prime(a(n-1))^2, for n>=2.

Extensions

a(6) from Rémy Sigrist, Jul 26 2022

A067339 Divide the natural numbers in sets of consecutive numbers, starting with {1,2}, each set with number of elements equal to the sum of elements of the preceding set. The final element of the n-th set gives a(n).

Original entry on oeis.org

2, 5, 17, 155, 12092, 73114280, 2672849006516342, 3572060905817699556013859788655, 6379809557435582128907282471160505774257452233828787563248842
Offset: 1

Views

Author

Floor van Lamoen, Jan 16 2002

Keywords

Comments

The sets begin {1, 2}, {3, 4, 5}, {6, 7, 8, ..., 17}, ...

Crossrefs

Cf. A006894, A002658. Partial sums of A067338.

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]*(a[n-1]+1)/2 + 2, a[1]==2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
    NestList[(#(#+1))/2+2&,2,10] (* Harvey P. Dale, Jun 17 2017 *)
  • PARI
    a(n) = if(n>1,a(n-1)*(a(n-1)+1)/2)+2 \\ Edited by M. F. Hasler, Jan 23 2015
    
  • PARI
    vector(10,i,if(i>1,n=n*(a+a-n+1)/2;a+=n,n=a=2)) \\ M. F. Hasler, Jan 23 2015

Formula

a(n)=a(n-1)*(a(n-1)+1)/2 + 2
a(n)=a(n-1)+A067338(n). - M. F. Hasler, Jan 23 2015
a(n) ~ 2 * c^(2^n), where c = 1.312718001584962838462131787518361199185077166417566246117... . - Vaclav Kotesovec, Dec 09 2015

Extensions

More terms from Jason Earls, Jan 16 2002

A283793 Number of elements formable in <= n steps, starting with 4 elements, combining 2 elements into a new element at each step.

Original entry on oeis.org

4, 14, 109, 5999, 17997004, 161946085486514, 13113267302202731189080679359, 85978889669509647874887802052390686151982448025024665124
Offset: 0

Views

Author

Michael Turniansky, Mar 16 2017

Keywords

Comments

In a game such as Doodle God (see links), you start with Earth, Air, Fire and Water, and combine them two at a time (including combining an element with itself) into new elements. A(n) is the hypothetical maximum number of different possible elements you could reach from clicking at most n times.
This list is akin to A006894, which is the sequence if we started with 1 element instead of 4.

Examples

			Starting with {A, B, C, D}, we can make {AA, AB, AC, AD, BB, BC, BD, CC, CD, and DD}.  The union of these two sets has cardinality 14 = a(1).
		

Crossrefs

Cf. A006894.

Programs

  • Mathematica
    a[0]=4; a[n_] := a[n] = 4 + a[n-1] (a[n-1] + 1)/2; a /@ Range[0, 7] (* Giovanni Resta, Mar 16 2017 *)
  • PARI
    a(n) = if(n<1, 4, 4 + a(n - 1) * (a(n - 1) + 1) / 2);
    for(n=0, 7, print1(a(n),", ")) \\ Indranil Ghosh, Mar 16 2017

Formula

a(n) = 4 + T(a(n-1)) where T(m) is the m-th triangular number.

A363257 a(n) = floor( ((a(n-1) + 1) / 2)^2 ) + 1 for n >= 1, with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 31, 257, 16642, 69247363, 1198799355237125, 359279973529237254190922184970, 32270524844792355518177347536627638351478874995525184567711
Offset: 0

Views

Author

Harry Richman, May 23 2023

Keywords

Comments

Iterated application of A033638, with a shift.

Crossrefs

Programs

  • PARI
    a(n) = if(n < 1, 0, floor( ((a(n-1) + 1) / 2)^2 ) + 1) \\ Andrew Howroyd, Jan 01 2024

Formula

a(n) = A033638(a(n-1)+1) for n > 0.
log a(n) ~ C * 2^n for some constant C.

A173498 Partial sums of A005588.

Original entry on oeis.org

2, 9, 61, 2194, 2592601, 3374954133663, 5695183504482491594510172, 16217557574922386301420519886707289378131172220652, 131504586847961235687181874578063117114329409897566535831366955410641808739121788386036154689297602
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2010

Keywords

Comments

Partial sums of number of free binary rooted trees of height n. The subsequence of primes in this partial sum begins: 2, 61, no more through a(12).

Examples

			a(9) = 2 + 7 + 52 + 2133 + 2590407 + 3374951541062 + 5695183504479116640376509 + 16217557574922386301420514191523784895639577710480 + 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A005588(i).
Previous Showing 11-16 of 16 results.