A349919
Number of transitive relations on an n-set with exactly two ordered pairs.
Original entry on oeis.org
0, 0, 5, 27, 90, 230, 495, 945, 1652, 2700, 4185, 6215, 8910, 12402, 16835, 22365, 29160, 37400, 47277, 58995, 72770, 88830, 107415, 128777, 153180, 180900, 212225, 247455, 286902, 330890, 379755, 433845, 493520, 559152, 631125, 709835, 795690, 889110, 990527, 1100385, 1219140, 1347260, 1485225, 1633527, 1792670
Offset: 0
a(2) = 5. The five relations on a 2-set are {(1,1),(1,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,2)} and {(2,1),(2,2)}.
This is a diagonal of the array
A285192.
-
LinearRecurrence[{5,-10,10,-5,1},{0,0,5,27,90},50] (* Harvey P. Dale, Oct 23 2022 *)
A245731
Number of connected labeled transitive relations on an n-set.
Original entry on oeis.org
1, 2, 9, 109, 2647, 110481, 7291543, 726434549, 106312974249, 22465350835849, 6771847676632679, 2883916106465622053, 1720792953946798909927, 1427968172285571102335605, 1637002867699829205840095585, 2577011453377960519672777065693, 5541005747990556022043234479371823, 16195114271558690956785525865003941945, 64068293759315414337050896928055465961863
Offset: 0
a(2) = 9. There are 13 transitive relations on the set {1,2}. Four of these are not connected: {}, {(1,1)}, {(2,2)}, {(1,1),(2,2)}. 13-4=9.
A245767
Triangular array read by rows: T(n,k) is the number of transitive relations on {1,2,...,n} that have exactly k reflexive points, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 6, 4, 19, 57, 66, 29, 219, 876, 1428, 1116, 355, 4231, 21155, 44500, 49070, 28405, 6942, 130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527, 6129859, 42909013, 131457522, 228345565, 242894155, 158322528, 58628647, 9535241
Offset: 0
T(2,1) = 6 because we have: {(1,1)}, {(2,2)}, {(1,1),(1,2)}, {(1,1),(2,1)}, {(2,2),(1,2)}, {(2,2),(2,1)}.
Triangle T(n,k) begins:
1;
1, 1;
3, 6, 4;
19, 57, 66, 29;
219, 876, 1428, 1116, 355;
4231, 21155, 44500, 49070, 28405, 6942;
130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527;
...
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n+1]] x^n/n!, {n, 0, lg-1}];
CoefficientList[#, y]& /@ (CoefficientList[A[x + Exp[y*x]-1] + O[x]^lg, x]* Range[0, lg-1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A280192
Triangle read by rows: T(n,k) = number of topologies on an n-set X such that there are exactly k elements in X that are topologically distinguishable, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 1, 0, 3, 1, 9, 0, 19, 10, 12, 114, 0, 219, 31, 300, 190, 2190, 0, 4231, 361, 1158, 10140, 4380, 63465, 0, 130023, 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859, 32663, 192496, 1930852, 2381624, 27601000, 7281288, 171636052, 0, 431723379
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 3;
1, 9, 0, 19;
10, 12, 114, 0, 219;
31, 300, 190, 2190, 0, 4231;
361, 1158, 10140, 4380, 63465, 0, 130023;
2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859;
...
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
CoefficientList[#, y]& /@ (CoefficientList[A[Exp[x] - 1 - x + y*x] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A349849
Number of transitive relations on an n-set with exactly four ordered pairs.
Original entry on oeis.org
0, 0, 1, 45, 549, 3755, 18120, 69006, 220710, 616554, 1545435, 3544915, 7552611, 15119325, 28699034, 52032540, 90643260, 152465316, 248625765, 394404489, 610396945, 923906655, 1370595996, 1996425530, 2859913794, 4034751150, 5612802975, 7707539151, 10457928495
Offset: 0
a(2) = binomial(2,2) = 1. The only transitive relation with four ordered pairs on the 2-set {1,2} is {(1,1),(1,2),(2,1),(2,2)}.
A366194
Number of limit dominating binary relations on [n].
Original entry on oeis.org
1, 2, 13, 177, 4486
Offset: 0
Every idempotent relation (A121337) is limit dominating.
Every transitive relation (A006905) is limit dominating.
Every nilpotent relation (A003024) is limit dominating.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
A366722
Number of limit dominated binary relations on [n].
Original entry on oeis.org
1, 2, 13, 399, 55894
Offset: 0
Every idempotent relation (A121337) is limit dominated.
Every dense relation (A355730) is limit dominated.
Every primitive relation (A070322) is limit dominated.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, pp. 105-117.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
A369776
Triangular array read by rows. T(n,k) is the number of inequivalent (as defined below) transitive binary relations R on [n] such that |domain(R intersect R^(-1))| = k, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 2, 4, 19, 9, 12, 29, 219, 76, 72, 116, 355, 4231, 1095, 760, 870, 1775, 6942, 130023, 25386, 13140, 11020, 15975, 41652, 209527, 6129859, 910161, 355404, 222285, 236075, 437346, 1466689, 9535241, 431723379, 49038872, 14562576, 6871144, 5442150, 7386288, 17600268, 76281928, 642779354
Offset: 0
Triangle begins
1;
1, 1;
3, 2, 4;
19, 9, 12, 29;
219, 76, 72, 116, 355;
4231, 1095, 760, 870, 1775, 6942;
...
-
nn = 8; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ y x] - 1]*p[ x], {x, 0, nn}], {x, y}]] // Grid
A369778
Number of inequivalent (as defined below) transitive binary relations on [n].
Original entry on oeis.org
1, 2, 9, 69, 838, 15673, 446723, 19293060, 1251685959, 120386313553, 16900121126060, 3411142115103803, 977085613480027515, 392874276568326733742, 219743920204264577507581, 169664195991510052549565897, 179646979835553234783655867894, 259379781267410563698300438118605, 508142540645401577520522108019282903
Offset: 0
-
nn = 16; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ x] - 1]*p[ x], {x, 0, nn}], x]
A341471
Number of antisymmetric, antitransitive relations on n labeled nodes.
Original entry on oeis.org
1, 1, 3, 21, 317, 9735, 583907, 66226033, 13837055261
Offset: 0
There are a(3) = 21 antisymmetric, antitransitive relations on n = 3 letters:
- the empty relation,
- all six relations containing only a single pair (x,y) (with x != y),
- all twelve relations {(x1,y1), (x2,y2)} containing exactly two ordered pairs, neither of which is (y1,x1) or (y2,x2), and
- two relations containing three ordered pairs: {(1,2), (2,3), (3,1)} and {(1,3), (3,2), (2,1)}.
Comments