cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A062726 Numbers that do not contain repeated letters when written in Roman numerals.

Original entry on oeis.org

1, 4, 5, 6, 9, 10, 11, 14, 15, 16, 40, 41, 44, 45, 46, 50, 51, 54, 55, 56, 59, 60, 61, 64, 65, 66, 90, 91, 94, 95, 96, 100, 101, 104, 105, 106, 109, 110, 111, 114, 115, 116, 140, 141, 144, 145, 146, 150, 151, 154, 155, 156, 159, 160, 161, 164, 165, 166, 400, 401, 404
Offset: 1

Views

Author

Rodolfo Kurchan, Jul 11 2001

Keywords

Examples

			9 is OK because when written in Roman numerals it is IX and has no letter repeated.
The largest possible term is a(316) = 1666 = MDCLXVI. - _Sean A. Irvine_, Apr 07 2023
		

Crossrefs

Cf. A006968.

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 23 2001

A082763 Roman numeral contains an asymmetric symbol (L).

Original entry on oeis.org

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
Offset: 1

Views

Author

Rick L. Shepherd, May 21 2003

Keywords

Comments

I,V,X,C,D,M - and even the vinculum (bar) and apostrophus (backwards "C") - are each symmetric: horizontally, vertically, or both.
Numbers containing a 4 when decimally encoded with A061493. - Reinhard Zumkeller, Apr 14 2013

Examples

			40 = XL, 89 = LXXXIX, 140 = CXL.
		

Crossrefs

Cf. A006968 (Roman numerals main entry), A078715 (Palindromic Roman numerals).

Programs

  • Haskell
    a082763 n = a082763_list !! (n-1)
    a082763_list = filter (containsL . a061493) [1..3999] where
       containsL x = d == 4 || x > 0 && containsL x' where
                     (x',d) = divMod x 10
    -- Reinhard Zumkeller, Apr 14 2013
  • Maple
    with(StringTools): for n from 1 to 152 do if(Search("L", convert(n, roman)) > 0)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
  • Mathematica
    Select[Range[200],StringCases[RomanNumeral[#],"L"]!={}&] (* Harvey P. Dale, Jun 10 2023 *)
  • PARI
    /* "%" use below is actually identical to lift(Mod(n-1,50)) */ /* (n-1)50 could be used for integer division below */ /* instead of floor, but the OEIS sometimes loses  */ /* characters depending upon where on a submitted line they are. */ a(n)=floor((n-1)/50)*100+40+(n-1)%50 for(n=1,125,print1(a(n),","))
    

Formula

a(n+50) = a(n) + 100 for n >= 1 [a(n+L) = a(n) + C for n >= I], a(1) = 40 [a(I) = XL], a(n+1) = a(n) + 1 for 1 <= n <= 49 [a(n+I) = a(n) + I for I <= n <= XLIX]; so a(n) = floor((n-1)/50)*100 + 40 + ((n-1)(mod 50)) for n >= 1 [a(n) = floor((n-I)/L)*C + XL + ((n-I)(mod L)) for n >= I].

A092197 Brevity advantage of "new style" over "old style" Roman numerals.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 5, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 6, 0, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Marc LeBrun, Feb 24 2004

Keywords

Examples

			a(4)=2 because old style takes four letters (IIII) versus new style's two (IV).
		

Crossrefs

Programs

  • Maple
    A092197 := proc(n) return length(convert(n, roman, period=early)) - length(convert(n, roman)): end: seq(A092197(n),n=1..105); # Nathaniel Johnston, May 18 2011

Formula

a(n) = A092196(n) - A006968(n).

A093785 Numbers that are divisible by every digit in their Roman numeral representation.

Original entry on oeis.org

1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2000, 3000
Offset: 1

Views

Author

Reinhard Zumkeller, May 17 2004

Keywords

Comments

The sequence contains only values less than 4000, see A078715 for a discussion on the Roman 4M-problem.

Examples

			I, II, III, V, X, XX, XXX, L, C, CC, CCC, D, M, MM, MMM.
		

Crossrefs

Cf. A034838.
Cf. A061493.

Programs

  • Haskell
    a093785 n = a093785_list !! (n-1)
    a093785_list = filter p [1..3999] where
       p v = q $ a061493 v where
         q w = w == 0 || v `mod` ([0,1,5,10,50,100,500,1000] !! d') == 0 && q w'
              where  (w',d) = divMod w 10; d' = fromInteger d
    -- Reinhard Zumkeller, Apr 14 2013

A094109 Start with "I" in Roman numerals (one). The next number (in Roman numerals) describes the number of Roman numerals written previously in the sequence. Convert this infinite sequence into an infinite sequence of Arabic numbers.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 12, 15, 17, 21, 24, 28, 34, 39, 44, 48, 54, 57, 61, 64, 68, 74, 79, 84, 90, 92, 96, 100, 101, 103, 107, 111, 114, 118, 124, 129, 134, 140, 143, 149, 154, 158, 164, 169, 174, 180, 185, 191, 195, 199, 204, 208, 214, 219, 224, 230, 235, 241
Offset: 1

Views

Author

Eric Angelini, May 03 2004

Keywords

Examples

			The sequence begins I, I, II, IV, VI, VIII, XII, XV, XVII, XXI, XXIV, XXVIII, XXXIV, XXIX, XLIII, XLVIII, LIV, LVII, LXI, LXIV, ...
		

Crossrefs

See A006968 for how to spell the Roman numerals.

Programs

  • Maple
    A094109 := proc(n) option remember: if(n<=2)then return 1:fi: return procname(n-1) + length(convert(procname(n-1),roman)): end: seq(A094109(n),n=1..58); # Nathaniel Johnston, May 18 2011

Formula

a(n) = a(n-1) + A006968(a(n-1)) for n >= 3. - Nathaniel Johnston, May 18 2011

Extensions

Extended by Nathaniel Johnston, May 18 2011

A105247 Product of digits of Roman Numerals.

Original entry on oeis.org

1, 1, 1, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 50, 50, 50, 50, 50, 100, 100, 100, 100, 100, 500, 500, 500, 500, 500, 1000, 1000, 1000, 1000, 1000, 5000, 5000, 5000, 5000, 5000, 10000, 500, 500, 500, 500, 2500, 2500, 2500, 2500, 2500, 5000, 50, 50, 50, 50, 250
Offset: 1

Views

Author

Jonathan Vos Post, Apr 14 2005

Keywords

Comments

New Roman Numerals A006968 (i.e., 4 = IV, not IIII). Related to sum of digits of n in Roman numeral representation A093783.

Examples

			a(3) = 1 because 3 = "III" and I*I*I = I = 1.
a(4) = 5 because 4 = "IV" and I*V = V = 5.
a(9) = 10 because 9 = "IX" and I*X = X = 10.
a(14) = 50 because 14 = "XIV" and X*I*V = L = 50.
a(19) = 100 because 19 = "XIX" and X*I*X = C = 100.
a(24) = 500 because 24 = "XXIV" and X*X*I*V = D = 500.
a(29) = 1000 because 29 = "XXIX" and X*X*I*X = M = 1000.
a(34) = 5000 because 34 = "XXXIV" and X*X*X*I*V = 5000.
a(39) = 10000 because 39 = "XXXIX" and X*X*X*I*X = myriad = 10000.
a(40) = 500 because 40 = "XL" and X*L = D = 500.
a(44) = 2500 because 44 = "XLIV" and X*L*I*V = MMD = 2500.
a(49) = 5000 because 49 = "XLIX" and X*L*I*X = 5000.
a(50) = 50 because 50 = L.
		

Crossrefs

Programs

  • Maple
    with(StringTools): A105247 := proc(n) local r: r:=convert(n, roman): return mul(parse(SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll(r[j], "I", "1"), "V", "5"), "X", "10"), "L", "50"), "C", "100"), "D", "500"), "M", "1000")),j=1..length(r)): end: seq(A105247(n),n=1..54); # Nathaniel Johnston, May 18 2011

A118121 Roman numeral complexity of n.

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 3, 4, 2, 1, 2, 3, 4, 3, 2, 3, 4, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 5, 4, 3, 4, 5, 5, 5, 4, 4, 5, 5, 5, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 1, 2, 3, 4, 3, 2, 3, 4, 5, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 3, 4, 5, 6, 5, 4, 5, 5, 6, 5, 4, 4, 5, 6, 5, 5, 6, 6, 6, 6, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 1, 2, 3
Offset: 1

Views

Author

Jonathan Vos Post, May 12 2006

Keywords

Comments

The least number of letters {I, V, X, L, C, D, M} needed to represent n by an expression with conventional Roman numerals, addition, multiplication and parentheses. a(n) <= A006968(n) and a(n) <= A005245(n). Conventional Roman numerals are very efficient at reducing complexity from number of letters in "old style" Roman numerals (A092196) and more primitive representations. In all but two examples shown (38, 88) the use of {+,*} reduces the representation by a single symbol (counting + and *); in these two it saves 2 symbols. In an alternate history, complexity theory and minimum description length could have been invented by Gregorius Catin.

Examples

			a(n) < A006968(n) for these examples. Here "<" means less in letter count:
a(18) = 4 [IX + IX < XVIII]; a(28) = 5 [XIV * II < XXVIII]; a(33) = 5 [XI * III < XXXIII]; a(36) = 4 [VI * VI < XXXVI]; a(37) = 5 [VI * VI + I < XXXVII]; a(38) = 5 [XIX * II < XXXVIII]; a(77) = 5 [XI * VII < LXXVII]; a(78) = 6 [XIII * VI < LXXVIII]; a(81) = 4 [IX * IX < LXXXI]; a(82) = 5 [XLI * II < LXXXII]; a(83) = 6 [XLI * II + I < LXXXIII]; a(84) = 5 [XX * IV < LXXXIV]; a(87) = 6 [IX * IX + VI < LXXXVII]; a(88) = 6 [XI * VIII < LXXXVIII].
		

Crossrefs

A123060 Least positive integer k such that n has the same number of characters in base k and in Roman numeral representation, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 2, 2, 4, 11, 4, 3, 2, 3, 4, 3, 0, 2, 3, 5, 3, 0, 2, 0, 3, 0, 2, 0, 3, 4, 3, 0, 2, 0, 3, 0, 2, 0, 0, 7, 4, 3, 0, 3, 4, 3, 0, 2, 3, 51, 8, 4, 3, 4, 8, 4, 3, 0, 4, 8, 4, 3, 0, 3, 5, 3, 0, 0, 3, 5, 3, 0, 0, 0, 3, 0, 0, 2, 0, 3, 3, 0, 2, 0, 3, 0
Offset: 1

Views

Author

Jonathan Vos Post, Sep 26 2006

Keywords

Examples

			a(1) = 1 since Roman(1) = I and 1(base 1) have the same (1) number of characters.
a(4) = 3 since Roman(4) = IV and 11(base 3) have the same (2) number of characters.
a(8) = 2 since Roman(8) = VIII and 1000(base 2) have the same (4) number of characters.
a(10) = 11 since Roman(10) = X and X(base 11) have the same (1) number of characters.
a(11) = 4 since Roman(11) = XI and 23(base 4) have the same (2) number of characters.
a(12) = 3 since Roman(12) = XII and 110(base 3) have the same (3) number of characters.
a(17) = 0 because Roman(17) = XVII has 4 characters, while 17 = 10001(base 2) has 5 characters and 17 = 122(base 3) has 3 characters.
a(30) = 4 because Roman(30) = XXX has 3 characters, as do 110(base 5) and 132(base 4), but Min{4,5} = 4.
		

Crossrefs

Cf. A006968.

Programs

  • Maple
    A123060 := proc(n) local k,l,r: if(n<=3)then return 1:fi: r:=length(convert(n,roman)): for k from 2 to n+1 do l:=nops(convert(n,base,k)): if(l = r)then return k: elif(lA123060(n),n=1..86); # Nathaniel Johnston, May 18 2011

Formula

a(n) = min{k: StringLength(n base k) = StringLength(Roman(n))}, or 0 if no such k exists. a(n) = min{k: A006968(n) = 1 + floor(log_b(n))}, or 0 if no such k exists.

Extensions

Extended and corrected by Nathaniel Johnston, May 18 2011

A130228 Roman numerals with "i" replaced by "1", "v" replaced by "5", "x" replaced by 10, etc., sorted in increasing order.

Original entry on oeis.org

1, 5, 10, 11, 15, 50, 51, 100, 101, 105, 110, 111, 500, 501, 505, 511, 1000, 1001, 1005, 1010, 1011, 1015, 1050, 1051, 5001, 5005, 5010, 5011, 5015, 5051, 5111, 10001, 10005, 10010, 10011, 10015, 10050, 10051, 10100, 10101, 10105, 10110, 10111
Offset: 1

Views

Author

Eric Angelini, Aug 05 2007

Keywords

Comments

Cf. A093788.

A242181 Numbers with four X's in Roman numerals.

Original entry on oeis.org

39, 89, 139, 189, 239, 289, 339, 389, 439, 489, 539, 589, 639, 689, 739, 789, 839, 889, 939, 989, 1039, 1089, 1139, 1189, 1239, 1289, 1339, 1389, 1439, 1489, 1539, 1589, 1639, 1689, 1739, 1789, 1839, 1889, 1939, 1989, 2039, 2089, 2139, 2189, 2239, 2289, 2339
Offset: 1

Views

Author

J. Lowell, May 06 2014

Keywords

Comments

All these end in XXXIX.

Examples

			39 = XXXIX; 89 = LXXXIX.
		

Crossrefs

Cf. A006968.

Programs

Formula

a(n) = 50n - 11. - Charles R Greathouse IV, May 06 2014

Extensions

More terms from Wesley Ivan Hurt, May 07 2014
Previous Showing 31-40 of 46 results. Next