cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A375917 Composite numbers k == 1, 11 (mod 12) such that 3^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

121, 1729, 2821, 7381, 8401, 10585, 15457, 15841, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 46657, 47197, 49141, 50881, 52633, 55969, 63973, 74593, 75361, 82513, 87913, 88573, 93961, 111361, 112141, 115921, 125665, 126217, 138481, 148417, 172081
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = 1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).
It seems that most terms are congruent to 1 modulo 12. The first terms congruent to 11 modulo 12 are 1683683, 1898999, 2586083, 2795519, 4042403, 4099439, 5087171, 8243111, ...

Examples

			1683683 is a term because 1683683 = 59*28537 is composite, 1683683 == 11 (mod 12), and 3^((1683683-1)/2) == 1 (mod 1683683).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | this seq | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375917(k) = (k>1) && !isprime(k) && (k%12==1 || k%12==11) && Mod(3,k)^((k-1)/2) == 1

A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1

A303448 Numbers m such that both m and (m-1)/2 are Fermat pseudoprimes base 2 (A001567).

Original entry on oeis.org

19781763, 46912496118443, 192153584101141163
Offset: 1

Views

Author

Max Alekseyev, Apr 24 2018

Keywords

Comments

No other terms below 2^65.
Terms a(2) and a(3) are of the form (2^(2k+1)+1)/3 = A007583(k).
Terms A007583(k) belong to this sequence for k in A303009. Correspondingly, a(4) <= A007583(A303009(3)) = (2^83+1)/3 = 3223802185639011132549803.
If a(n) is not divisible by 3, then it also belongs to A175625.

Crossrefs

Numbers (a(n)-1)/2 are listed in A303447.
Subsequence of A006970 and A300193.

Formula

a(n) = 2*A303447(n) + 1.

Extensions

a(1) from Amiram Eldar, Jan 26 2018

A262053 Euler pseudoprimes to base 6: composite integers such that abs(6^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, 10585, 11041, 11137, 12209, 14701, 15841, 17329, 18361, 20017, 21049, 22049, 29341, 31021, 31621, 34441, 36301, 38081, 39305, 39493, 41041, 43621, 44801, 46657
Offset: 1

Views

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), this sequence (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[25000] + 1, eulerPseudoQ[#, 6] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(6, (2*n+1))^n == 1 ||  Mod(6, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015

A262054 Euler pseudoprimes to base 7: composite integers such that abs(7^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, 10225, 11041, 11521, 12025, 13665, 14089, 19345, 20197, 20417, 20425, 25829, 29857, 29891, 35425, 38081, 39331, 46657, 49241, 49321, 50881, 58825, 64681, 75241, 75361, 76627, 78937, 79381
Offset: 1

Views

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), A262053 (base 6), this sequence (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[25000] + 1, eulerPseudoQ[#, 7] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(7, (2*n+1))^n == 1 ||  Mod(7, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015

A262055 Euler pseudoprimes to base 8: composite integers such that abs(8^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

9, 21, 65, 105, 133, 273, 341, 481, 511, 561, 585, 1001, 1105, 1281, 1417, 1541, 1661, 1729, 1905, 2047, 2465, 2501, 3201, 3277, 3641, 4033, 4097, 4641, 4681, 4921, 5461, 6305, 6533, 6601, 7161, 8321, 8481, 9265, 9709, 10261, 10585, 10745, 11041, 12545
Offset: 1

Views

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), A262053 (base 6), A262054 (base 7), this sequence (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[11000] + 1, eulerPseudoQ[#, 8] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(8, (2*n+1))^n == 1 ||  Mod(8, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015

A300193 Pseudo-safe-primes: numbers n = 2m+1 with 2^m congruent to n+1 or 3n-1 modulo m*n, but m composite.

Original entry on oeis.org

683, 1123, 1291, 4931, 16963, 25603, 70667, 110491, 121403, 145771, 166667, 301703, 424843, 529547, 579883, 696323, 715523, 854467, 904103, 1112339, 1175723, 1234187, 1306667, 1444523, 2146043, 2651687, 2796203, 2882183, 3069083, 3216931, 4284283, 4325443
Offset: 1

Views

Author

Francois R. Grieu, Mar 05 2018

Keywords

Comments

The definition's congruence is verified if n is a safe prime A005385 with m the corresponding Sophie Germain prime A005384; and for a few other n, which form the sequence.
If that congruence is verified and m is prime, then n is prime (follows from a result by Fedor Petrov).
That congruence is equivalent to the combination: 2^m == +-1 (mod n) and 2^m == 2 (mod m).
Composite n are Euler pseudoprimes A006970, and strong pseudoprimes A001262 if m is odd. The smallest is a(6534) = (2^47+1)/3 = 46912496118443 = 283*165768537521 (cf. A303448). See Peter Košinár link.
Even m belong to A006935. The first is a(986) = 252435584573, m = 126217792286 (cf. A303008).

Examples

			n = 683 = 2*341+1 is in the sequence because 2^341 == 2048 == 3*n-1 (mod 341*683) and m = 341 = 11*13 is composite.
n = 301703 = 2*150851+1 is in the sequence because 2^150851 == 301704 == n+1 (mod 150851*301703) and m = 150851 = 251*601 is composite.
n = 5 = 2*2+1 is not in the sequence because m = 2 is prime.
		

Crossrefs

Programs

  • Mathematica
    For[m=1,(n=2m+1)<4444444,++m,If[MemberQ[{n+1,3n-1},PowerMod[2,m,m*n]] &&!PrimeQ[m], Print[n]]] (* Francois R. Grieu, Mar 19 2018 *)
  • PARI
    isok(n) = {if ((n % 2) && (m=(n-1)/2) && !isprime(m), v = lift(Mod(2, m*n)^m); if ((v == n+1) || (v == 3*n-1), return (1));); return (0);} \\ Michel Marcus, Mar 06 2018

A303447 Numbers m such that both m and 2m+1 are Fermat pseudoprimes base 2 (A001567).

Original entry on oeis.org

9890881, 23456248059221, 96076792050570581
Offset: 1

Views

Author

Max Alekseyev, Apr 24 2018

Keywords

Comments

No other terms below 2^64.
Terms a(2) and a(3) are of the form (4^k-1)/3=A002450(k). Terms A002450(k) belong to this sequence for k in A303009. Correspondingly, a(4) <= A002450(A303009(3)) = (4^41-1)/3 = 1611901092819505566274901.

Crossrefs

Numbers 2*a(n)+1 are listed in A303448.
Subsequence of A006970.

Extensions

a(1) from Amiram Eldar, Jan 26 2018

A181781 Numbers n that are Euler pseudoprimes to some base b, 2 <= b <= n-2.

Original entry on oeis.org

21, 25, 33, 45, 49, 57, 65, 69, 77, 85, 91, 93, 105, 117, 121, 125, 129, 133, 141, 145, 153, 161, 165, 169, 175, 177, 185, 189, 201, 205, 209, 213, 217, 221, 225, 231, 237, 245, 247, 249, 253, 259, 261, 265, 273, 285, 289, 297, 301, 305, 309, 321, 325, 329, 333, 341, 343, 345
Offset: 1

Views

Author

Karsten Meyer, Nov 12 2010

Keywords

Crossrefs

Programs

  • Maple
    isEulPSP := proc(n,b) if isprime(n) then false; else m := modp(b &^ ((n-1)/2),n) ; if m= 1 or m = n-1 then true; else false; end if; end if;end proc:
    isA181781 := proc(n) for b from 2 to n-2 do if isEulPSP(n,b) then return true; end if; end do: return false;end proc:
    for n from 3 to 800 do if isA181781(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, May 30 2011
  • Mathematica
    fQ[n_?PrimeQ, b_] = False; fQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; gQ[n_] := AnyTrue[Range[2, n - 2], fQ[n, #] &]; Select[2 Range[172] + 1, gQ] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970, Version 10 *)

Extensions

Definition corrected by Max Alekseyev, Nov 12 2010
Edited definition to be consistent with OEIS style. - N. J. A. Sloane, Nov 13 2010

A262028 a(n) = (A262026(n) - 1)/2.

Original entry on oeis.org

0, 1, 0, 1, 0, 19, 2, 0, 2, 136, 1, 0, 1, 265, 3, 0, 3, 34, 0, 2983, 206, 1, 4, 0, 4, 1, 10, 82, 2, 0, 11209, 2, 46, 52, 5, 0, 5, 209887, 25, 463, 10, 1, 3289414, 0, 70317346, 1, 52, 28, 2509567, 6, 0, 6, 76, 7, 156595
Offset: 1

Views

Author

Wolfdieter Lang, Oct 04 2015

Keywords

Comments

This is the column Y_0 of the Table of a proof given as a W. Lang link under A007970.
(x0(n), y0(n) = 2*a(n) + 1) with x0(n) = A262067(n) are the fundamental solutions of the Pell equation x^2 - d*y^2 = +1 with odd y. The d values coincide with d = d(n) = A007970(n). For a proof see the mentioned link.

Examples

			For the first triples [d(n), x0(n), 2*a(n) + 1] see A262066.
		

Crossrefs

Formula

A262067(n)^2 - A007970(n)*(2*a(n) + 1)^2 = +1, n >= 1.
Previous Showing 11-20 of 28 results. Next