A321729
Number of integer partitions of n whose Young diagram can be partitioned into vertical sections of the same sizes as the parts of the original partition.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 28, 40, 51
Offset: 0
The a(1) = 1 through a(8) = 12 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the half-loop-graphical partitions up to n = 8:
(1) (11) (21) (22) (221) (222) (322) (332)
(111) (211) (311) (321) (2221) (2222)
(1111) (2111) (2211) (3211) (3221)
(11111) (3111) (4111) (3311)
(21111) (22111) (4211)
(111111) (31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
For example, the half-loop-graphs
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(7).
The complement is counted by
A321728.
Cf.
A000110,
A000258,
A000700,
A000701,
A006052,
A007016,
A008277,
A046682,
A319056,
A319616,
A321730,
A321737,
A321738.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are
A029889 or
A339843 (covering).
The version for full loops is
A339656.
A320663/
A339888 count unlabeled multiset partitions into singletons/pairs.
A339659 is a triangle counting graphical partitions by length.
Cf.
A006129,
A025065,
A062740,
A095268,
A096373,
A167171,
A320461,
A338915,
A339842,
A339844,
A339845.
-
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
Table[Length[Select[IntegerPartitions[n],Length[Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]]>0&]],{n,8}]
A321720
Number of non-normal (0,1) semi-magic squares with sum of entries equal to n.
Original entry on oeis.org
1, 1, 2, 6, 25, 120, 726, 5040, 40410, 362881, 3630840, 39916800, 479069574, 6227020800, 87181402140, 1307674370040, 20922977418841, 355687428096000, 6402388104196400, 121645100408832000, 2432903379962038320, 51090942171778378800, 1124000886592995642000, 25852016738884976640000
Offset: 0
Cf.
A006052,
A007016,
A057151,
A068313,
A008300,
A101370,
A104602,
A120732,
A271103,
A319056,
A319616.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321724
Irregular triangle read by rows where T(n,k) is the number of non-isomorphic non-normal semi-magic square multiset partitions of weight n and length d = A027750(n, k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 1, 1, 5, 1, 1, 3, 7, 1, 1, 1, 1, 4, 9, 12, 11, 1, 1, 1, 1, 4, 15, 1, 1, 13, 31, 1, 1, 5, 43, 22, 1, 1, 1, 1, 5, 22, 103, 30, 1, 1, 1, 1, 6, 106, 264, 42, 1, 1, 30, 383, 1, 1, 6, 56, 1, 1, 1, 1, 7, 45, 321, 2804, 1731, 77, 1
Offset: 1
Triangle begins:
1
1 1
1 1
1 2 1
1 1
1 2 3 1
1 1
1 3 5 1
1 5 1
1 3 7 1
Inequivalent representatives of the T(10,3) = 7 semi-magic squares (zeros not shown):
[2 ] [2 ] [2 ] [2 ] [2 ] [11 ] [11 ]
[ 2 ] [ 2 ] [ 2 ] [ 11 ] [ 11 ] [11 ] [1 1 ]
[ 2 ] [ 2 ] [ 11 ] [ 11 ] [ 1 1 ] [ 11 ] [ 1 1 ]
[ 2 ] [ 11] [ 1 1] [ 11] [ 1 1] [ 1 1] [ 1 1]
[ 2] [ 11] [ 11] [ 11] [ 11] [ 11] [ 11]
A323347
Number of integer partitions of n whose parts can be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 6, 2, 11, 2, 7, 7, 10, 2, 18, 2, 17, 13, 9, 2, 50, 3, 10, 24, 34, 2, 85, 2, 51, 46, 12, 9, 261, 2, 13, 80, 257, 2, 258, 2, 323, 431, 15, 2, 1533, 3, 227, 206, 1165, 2, 971, 483, 2409, 309, 18, 2
Offset: 0
The a(8) = 5 integer partitions are (8), (44), (2222), (3311), (11111111).
The a(12) = 11 integer partitions (C = 12):
(C)
(66)
(444)
(3333)
(4422)
(5511)
(222222)
(332211)
(22221111)
(222111111)
(111111111111)
For example, the arrangements of (222111111) are:
[1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
[1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
[2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
Table[Length[Select[IntegerPartitions[n],!Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]
A321723
Number of non-normal magic squares whose entries are all 0 or 1 and sum to n.
Original entry on oeis.org
1, 1, 0, 0, 9, 20, 96, 656, 5584, 48913, 494264, 5383552, 65103875, 840566080, 11834159652, 176621049784, 2838040416201, 48060623405312
Offset: 0
The a(4) = 9 magic squares:
[1 1]
[1 1]
.
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][1 0 0 0][0 0 1 0][0 1 0 0][0 0 0 1][0 0 1 0][1 0 0 0]
[0 1 0 0][0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0][0 0 1 0]
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],SameQ@@Join[{Tr[prs2mat[#]],Tr[Reverse[prs2mat[#]]]},Total/@prs2mat[#],Total/@Transpose[prs2mat[#]]]]&]],{n,5}]
A321732
Number of nonnegative integer square matrices with sum of entries equal to n, no zero rows or columns, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 3, 11, 53, 317, 2293, 19435, 188851, 2068417, 25203807, 338117445, 4951449055, 78589443061, 1343810727205, 24626270763109, 481489261372381, 10004230113283129, 220125503239710879, 5113204953106107087, 125037079246130168973
Offset: 0
The a(3) = 11 matrices:
[3]
.
[2 0] [1 1] [1 0] [0 1]
[0 1] [1 0] [0 2] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A000701,
A006052,
A007016,
A120732,
A319056,
A320451,
A321718,
A321719,
A321722,
A321733,
A321734,
A321735,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321735
Number of (0,1)-matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 7, 30, 153, 939, 6653, 53743, 486576
Offset: 0
The a(3) = 7 matrices:
[1 1]
[1 0]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A007016,
A049311,
A054976,
A057151,
A104602,
A320451,
A321719,
A321723,
A321732,
A321733,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A323302
Number of ways to arrange the parts of the integer partition with Heinz number n into a matrix with equal row-sums and equal column-sums.
Original entry on oeis.org
1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1
The a(900) = 12 matrix-arrangements of (3,3,2,2,1,1):
[1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
[3 2 1] [3 1 2] [2 3 1] [2 1 3] [1 3 2] [1 2 3]
.
[1 3] [1 3] [2 2] [2 2] [3 1] [3 1]
[2 2] [3 1] [1 3] [3 1] [1 3] [2 2]
[3 1] [2 2] [3 1] [1 3] [2 2] [1 3]
Positions of zeros are a superset of
A106543.
Cf.
A000005,
A001222,
A006052,
A007016,
A008480,
A056239,
A112798,
A120733,
A319056,
A321719,
A321721.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
Table[Length[Select[ptnmats[n],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{n,100}]
A321730
Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.
Original entry on oeis.org
1, 1, 1, 3, 8, 23, 79, 303, 1294, 5934, 29385, 156232, 884893
Offset: 0
The a(5) = 23 partitions of Young diagrams of integer partitions of 5 into vertical sections of the same sizes as the parts of the original partition, shown as colorings by positive integers:
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 3 1 3 2 1 3 1 3 1 2 3 3 2 2 3 3 2
3 2 3 3 2 3 1 1 3 3
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 3 3 2 3 3 3 3 3
3 1 4 3 2 4 3 4 4
4 4 1 4 4 2 4 3 4
.
1
2
3
4
5
Cf.
A000110,
A000258,
A000700,
A000701,
A006052,
A007016,
A008277,
A321728,
A321729,
A321731,
A321737,
A321738.
-
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
Table[Sum[Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]],{y,IntegerPartitions[n]}],{n,5}]
A321698
MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179
Offset: 1
The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins:
1: {} 33: {{1},{3}} 109: {{10}}
2: {{}} 41: {{6}} 113: {{1,2,3}}
3: {{1}} 43: {{1,4}} 121: {{3},{3}}
4: {{},{}} 47: {{2,3}} 123: {{1},{6}}
5: {{2}} 49: {{1,1},{1,1}} 125: {{2},{2},{2}}
7: {{1,1}} 51: {{1},{4}} 127: {{11}}
8: {{},{},{}} 53: {{1,1,1,1}} 128: {{},{},{},{},{},{}}
9: {{1},{1}} 55: {{2},{3}} 131: {{1,1,1,1,1}}
11: {{3}} 59: {{7}} 137: {{2,5}}
13: {{1,2}} 64: {{},{},{},{},{},{}} 139: {{1,7}}
15: {{1},{2}} 67: {{8}} 149: {{3,4}}
16: {{},{},{},{}} 73: {{2,4}} 151: {{1,1,2,2}}
17: {{4}} 79: {{1,5}} 155: {{2},{5}}
19: {{1,1,1}} 81: {{1},{1},{1},{1}} 157: {{12}}
23: {{2,2}} 83: {{9}} 161: {{1,1},{2,2}}
25: {{2},{2}} 85: {{2},{4}} 163: {{1,8}}
27: {{1},{1},{1}} 93: {{1},{5}} 165: {{1},{2},{3}}
29: {{1,3}} 97: {{3,3}} 167: {{2,6}}
31: {{5}} 101: {{1,6}} 169: {{1,2},{1,2}}
32: {{},{},{},{},{}} 103: {{2,2,2}} 177: {{1},{7}}
Cf.
A005176,
A007016,
A112798,
A271103,
A283877,
A299353,
A302242,
A306017,
A319056,
A319189,
A320324,
A321699,
A321717,
A322554,
A322703,
A322833.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]
Comments