cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 784 results. Next

A304747 May code shown in binary: a(n) = A007088(A303767(n)).

Original entry on oeis.org

0, 1, 11, 10, 110, 100, 101, 111, 1111, 1000, 1001, 1011, 1010, 1110, 1100, 1101, 11101, 10000, 10001, 10011, 10010, 10110, 10100, 10101, 10111, 11111, 11000, 11001, 11011, 11010, 11110, 11100, 111100, 100000, 100001, 100011, 100010, 100110, 100100, 100101, 100111, 101111, 101000, 101001, 101011, 101010, 101110, 101100, 101101
Offset: 0

Views

Author

Antti Karttunen, May 23 2018

Keywords

Examples

			The code can be constructed by the rule: a(n+1) is either the least number obtained from a(n) by toggling one or more 1-bits off if no such number is yet in the sequence, otherwise the least number not yet in sequence that can be obtained from a(n) by toggling one 0-bit on:
   n    a(n)
   0      0
   1      1
   2     11
   3     10
   4    110
   5    100
   6    101
   7    111
   8   1111
   9   1000
  10   1001
  11   1011
  12   1010
  13   1110
  14   1100
  15   1101
  16  11101
  17  10000
  18  10001
  19  10011
  20  10010
  21  10110
  22  10100
  23  10101
  24  10111
  25  11111
  26  11000
  27  11001
  28  11011
  29  11010
  30  11110
  31  11100
  32 111100
  33 100000
		

Crossrefs

Cf. also A304749.

Programs

Formula

a(n) = A007088(A303767(n)).

A339544 Primes p such that A007088(p) mod p is prime.

Original entry on oeis.org

3, 17, 19, 29, 31, 71, 79, 83, 103, 113, 151, 211, 229, 293, 331, 337, 347, 349, 421, 439, 449, 457, 607, 659, 683, 691, 739, 743, 809, 839, 883, 911, 977, 1039, 1051, 1193, 1249, 1277, 1283, 1303, 1367, 1439, 1451, 1499, 1567, 1597, 1609, 1663, 1747, 1753, 1861, 2089, 2137, 2273, 2309, 2311
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 08 2020

Keywords

Examples

			a(3) = 19 because 19 = 10011_2 and 10011 mod 19 = 17 which is prime.
		

Crossrefs

Cf. A007088.

Programs

  • Maple
    filter:= proc(n) isprime(n) and isprime(convert(n,binary) mod n) end proc:
    select(filter, [seq(i,i=3..10000,2)]);

A084484 a(n) = A007088(A084483(n)).

Original entry on oeis.org

1, 100, 11, 10, 1001, 1100, 111, 10000, 101, 10100, 10011, 110, 11001, 11100, 1111, 1000, 100001, 100100, 1011, 1010, 101001, 101100, 100111, 110000, 1101, 110100, 110011, 1110, 111001, 111100, 11111, 1000000, 10001, 1000100, 1000011, 10010, 1001001, 1001100
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = If[OddQ[n], 2*s[(n - 1)/2] + 1, If[EvenQ[IntegerExponent[n, 2]], n/2, 2*n]]; FromDigits[IntegerDigits[#, 2]]& /@ Array[s, 50] (* Amiram Eldar, Jul 22 2023 *)

Formula

a(n) = A007088(n) iff A000120(n) = A070939(n).

A138342 First differences of A007088.

Original entry on oeis.org

1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 88889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 888889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9
Offset: 1

Views

Author

Jaume Simon Gispert (jaume(AT)nuem.com), May 17 2008

Keywords

Examples

			1-0 = 1, 10-1 = 9, 11-10 = 1, 100-11 = 89, ...
		

Crossrefs

Programs

Formula

a(n) = A059482(A007814(n)).
From Antti Karttunen, Nov 06 2018: (Start)
a(n) = A007088(n) - A007088(n-1).
Multiplicative with a(2^e) = A059482(e), a(p^e) = 1 for odd primes p.
(End)
G.f.: Sum_{k>=0} 10^k * x^(2^k) / (1 + x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020

Extensions

Offset corrected and keyword:mult added by Antti Karttunen, Nov 06 2018

A154474 a(n) = A007088(A154473(n)).

Original entry on oeis.org

1101001010, 10101101010010, 11001110010010, 1011011100100010, 1110111001000010, 1101110010001110111001000100, 10111001001101110010011101110010001000
Offset: 0

Views

Author

Antti Karttunen, Jan 11 2009

Keywords

Comments

This sequence gives the parenthesis expressions shown at the upper right corner image of the page 103 of NKS, with left brackets (black squares) converted to 1's and right brackets (white squares) converted to 0's. Compare to A080070, A122242, A122245.

A339567 Numbers k such that A007088(k) == 1 (mod k).

Original entry on oeis.org

1, 5, 15, 25, 55, 91, 137, 525, 625, 925, 3967, 5995, 7625, 10767, 25087, 57225, 68817, 565027, 591415, 2515825, 2757625, 4162019, 5276309, 96689255, 115686005, 133890625, 242899421, 492029715, 588620625, 1839399055, 7786281065, 11231388063, 17251448809, 71050380625
Offset: 1

Views

Author

Robert Israel, Dec 09 2020

Keywords

Comments

All terms are odd.

Examples

			a(3) = 15 is a term because 15 = 1111_2 and 1111 == 1 (mod 15).
		

Crossrefs

Programs

  • Maple
    filter:= t -> convert(t,binary) mod t = 1: filter(1):= true:
    select(filter, [seq(i,i=1..10^7,2)]);
  • Mathematica
    Block[{a = {1}, k}, Do[If[Mod[FromDigits@ IntegerDigits[i, 2], i] == 1, AppendTo[a, i]], {i, 2, 10^7}]; a] (* Michael De Vlieger, Dec 12 2020 *)
  • PARI
    isok(n) = Mod(fromdigits(binary(n)), n) == 1;
    forstep(k=1, 10^7, 2, if(isok(k), print1(k, ", "))); \\ Daniel Suteu, Dec 12 2020

Extensions

a(30)-a(34) from Daniel Suteu, Dec 12 2020

A354837 Odd numbers k such that gcd(k, A007088(k)) != 1.

Original entry on oeis.org

21, 33, 63, 69, 81, 99, 111, 123, 159, 165, 183, 189, 203, 207, 219, 231, 237, 243, 249, 259, 261, 273, 297, 303, 315, 321, 363, 399, 411, 423, 429, 435, 441, 459, 483, 489, 495, 513, 543, 561, 567, 573, 585, 591, 603, 615, 621, 627, 633, 663, 669, 693, 707, 711
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 08 2022

Keywords

Examples

			k = 33; gcd(33,A007088(33)) = gcd(33, 100001) = 11, thus k = 33 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 700, 2], ! CoprimeQ[#, FromDigits[IntegerDigits[#, 2]]] &] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    isok(k) = (k%2) && (gcd(k, fromdigits(binary(k))) != 1); \\ Michel Marcus, Jun 09 2022

A020767 Product_{k=1..n} b(k), where b(k) = binary expansion of k (A007088) but read as if it were a decimal number.

Original entry on oeis.org

1, 1, 10, 110, 11000, 1111000, 122210000, 13565310000, 13565310000000, 13578875310000000, 13714664063100000000, 13865525367794100000000, 15252077904573510000000000, 16792537772935434510000000000, 18639716927958332306100000000000, 20708725506961707192077100000000000
Offset: 0

Views

Author

Susanna Cuyler, May 23 2003

Keywords

Examples

			a(4) = 1*10*11*100 = 11000.
		

Crossrefs

Partial products of A007088.

A140117 Numbers n for which A140116(n) uses fewer symbols than A007088(n).

Original entry on oeis.org

2, 4, 8, 15, 16, 31, 32, 33, 34, 63, 64, 65, 66, 68, 72, 125, 126, 127, 128, 129, 130, 131, 132, 136, 144, 160, 192, 247, 251, 253, 254, 255, 256, 257, 258, 259, 260, 264, 272, 288, 320, 384, 503, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 520, 521
Offset: 1

Views

Author

Rick L. Shepherd, May 08 2008

Keywords

Comments

The representation of n given by A140116(n) is more compact than the standard binary form of n for these numbers consisting of a sufficiently large proportion of 0's or of 1's among their bits.

Examples

			See also examples for A140116. 2180 is a term here as 2180 = 100010000100 (base 2), which uses 12 symbols, but A140116(2180) = 10112111210, which uses only 11 symbols including the two delimiter symbols (for which 2 is used).
		

Crossrefs

A186951 Number of lunar divisors (in base 10) of the n-th nonzero number whose decimal expansion contains only 0's and 1's (A007088(n)).

Original entry on oeis.org

9, 18, 90, 27, 90, 180, 819, 36, 90, 180, 738, 270, 738, 1638, 7461, 45, 90, 180, 738, 270, 819, 1476, 6570, 360, 738, 1476, 6732, 2457, 6570, 14922, 67968, 54, 90, 180, 738, 270, 738, 1476, 6570, 360, 738, 1638, 6570, 2214, 6732, 13140, 59868, 450, 738, 1476, 6732, 2214, 6570, 13464, 59868, 3276, 6570, 13140, 59868, 22383, 59868, 135936, 619902
Offset: 1

Views

Author

N. J. A. Sloane, Mar 01 2011

Keywords

Crossrefs

Previous Showing 11-20 of 784 results. Next