cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 192 results. Next

A033170 Positive numbers having the same set of digits in base 6 and base 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 68, 122, 246, 397, 425, 513, 625, 696, 970, 1062, 1167, 1215, 1244, 1251, 1576, 1722, 1787, 1823, 1871, 2406, 2413, 2532, 2574, 2660, 2844, 2851, 2856, 2857, 2858, 2859, 2860, 2861, 2864, 2865, 2872, 2879, 2900, 2954, 3005
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = Set(digits(n, 6)) == Set(digits(n, 7)); \\ Michel Marcus, Jan 21 2017

Extensions

Edited by Don Reble, Apr 28 2006
Further edited by N. J. A. Sloane, Jan 17 2009 at the suggestion of R. J. Mathar

A255591 Convert n to base 6, move least significant digit to most significant digit and convert back to base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 13, 19, 25, 31, 2, 8, 14, 20, 26, 32, 3, 9, 15, 21, 27, 33, 4, 10, 16, 22, 28, 34, 5, 11, 17, 23, 29, 35, 6, 42, 78, 114, 150, 186, 7, 43, 79, 115, 151, 187, 8, 44, 80, 116, 152, 188, 9, 45, 81, 117, 153, 189, 10, 46, 82, 118, 154, 190, 11
Offset: 0

Views

Author

Paolo P. Lava, Mar 02 2015

Keywords

Comments

a(6*n) = n.
Fixed points of the transform are listed in A048331.

Examples

			16 in base 6 is 24: moving the least significant digit to the most significant one we have 42 that is 26 in base 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n; print(0);
    for n from 1 to q do
    a:=convert(n,base,h); b:=[]; for k from 2 to nops(a) do b:=[op(b),a[k]]; od; a:=[op(b),a[1]];
    a:=convert(a,base,h,10); b:=0; for k from nops(a) by -1 to 1 do b:=10*b+a[k]; od;
    print(b); od; end: P(10^4,6);
  • Mathematica
    roll[n_, b_] := Block[{w = IntegerDigits[n, b]}, Prepend[Most@ w, Last@ w]]; b = 6; FromDigits[#, b] & /@ (roll[#, b] & /@ Range[0, 66]) (* Michael De Vlieger, Mar 04 2015 *)
  • Python
    def A255591(n):
        x=A007092(n)
        return int(x[-1]+x[:-1],6) # Indranil Ghosh, Feb 03 2017

A331565 The base 10 numbers with a digit product > 0 and which when written in bases 3,4,5,6,7,8,9 have two or more other base representations with the same digit product.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 91, 491, 921, 1138, 1234, 4853, 13581, 23568, 29242, 42161, 42162, 42163, 42164, 42991, 43365, 44313, 83342, 83651, 85226, 114382, 153881, 155462, 159422, 232868, 291862, 296183, 352486, 372642, 398543, 419563, 441194, 465326, 616146, 625431, 625523, 635813
Offset: 1

Views

Author

Scott R. Shannon, Jan 20 2020

Keywords

Comments

For terms 10 < a(n) < 10^9 none have a base-3 representation whose digit product equals the base-10 product. The first such entry using the base-4 representation is 491.

Examples

			6 is a term as 6_10 = 6_7 = 6_8 = 6_9, so it has three other base representations where the digit product also equals 6.
91 is a term as 91_10 = 331_5 = 133_8, so it has two other base representations where the digit product also equals 9.
491 is a term as 491_10 = 13223_4 = 3431_5, so it has two other base representations where the digit product also equals 36.
		

Crossrefs

Subsequence of A052382 (zeroless numbers).

Programs

  • Mathematica
    proDig[n_, b_] := Times @@ IntegerDigits[n, b]; seqQ[n_] := Module[{prod = proDig[n, 10], count = 0}, If[prod > 0, Do[If[proDig[n, b] == prod, count++]; If[count == 2, Break[]], {b, 3, 9}]]; count == 2]; Select[Range[650000], seqQ] (* Amiram Eldar, Jan 21 2020 *)
  • PARI
    isok(n) = {my(p=vecprod(digits(n))); (p != 0) && (sum(k=3, 9, p==vecprod(digits(n,k))) >= 2);} \\ Michel Marcus, Jan 21 2020

A339256 Leading digit of n in base 6.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Kevin Ryde, Nov 28 2020

Keywords

Crossrefs

Cf. A007092 (base 6), A109804 (partial sums).

Programs

  • Mathematica
    Table[IntegerDigits[n,6][[1]],{n,90}] (* Harvey P. Dale, Jul 19 2023 *)
  • PARI
    a(n) = n\6^logint(n,6);

Formula

a(n) = floor(n / 6^floor(log_6(n))).
G.f.: (x + Sum_{k>=0} Sum_{d=2..5} (x^(d*6^k)-x^(6^(k+1))) )/(1-x).

A004689 Fibonacci numbers written in base 6.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 12, 21, 33, 54, 131, 225, 400, 1025, 1425, 2454, 4323, 11221, 15544, 31205, 51153, 122402, 213555, 340401, 554400, 1335201, 2334001, 4113202, 10451203, 15004405, 25500012, 44504421, 114404433
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000045 (Fibonacci), A007092 (numbers in base 6).

Programs

  • Magma
    [Seqint(Intseq(Fibonacci(n),6)): n in [0..50]]; // G. C. Greubel, Oct 09 2018
  • Mathematica
    bf[n_,k_]:=Module[{s=ToString[BaseForm[n,k]]},ToExpression[StringDrop[s,{Part[StringPosition[s,"\n"],1,1],-1}]]] lst={};Do[f=bf[Fibonacci[n],6];AppendTo[lst,f],{n,0,4*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 17 2009 *)
    FromDigits[IntegerDigits[#, 6]]& / @ Fibonacci[Range[0, 40]] (* Vincenzo Librandi, Jun 08 2013 *)
  • PARI
    vector(50, n, n--; fromdigits(digits(fibonacci(n), 6))) \\ G. C. Greubel, Oct 09 2018
    

A031947 Numbers in which 0,1,2,3,4,5 all occur in base 6.

Original entry on oeis.org

8345, 8350, 8375, 8385, 8410, 8415, 8525, 8530, 8585, 8600, 8620, 8630, 8735, 8745, 8765, 8780, 8835, 8840, 8950, 8955, 8980, 8990, 9015, 9020, 10505, 10510, 10535, 10545, 10570, 10575, 11045, 11050, 11165, 11190, 11200, 11220, 11255, 11265, 11345, 11370, 11415
Offset: 1

Views

Author

Keywords

Comments

Contains numbers like 47265, 47290, 47295, 47405 which are absent in A049357. - R. J. Mathar, Aug 24 2023

Crossrefs

Cf. A007092 (base 6), A023744 (each base 6 digit once).

Programs

  • Maple
    isA031947 := proc(n)
        convert(convert(n,base,6),set) ;
        if nops(%) = 6 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 12000 do
        if isA031947(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Aug 24 2023

A031951 Numbers with exactly two distinct base-6 digits.

Original entry on oeis.org

6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 42, 44, 45, 46, 47, 49, 50, 55, 57, 61, 64, 67, 71, 72, 74, 79, 80, 84, 85, 87, 88, 89, 92, 93, 98, 100, 104, 107, 108, 111, 115, 117
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    M:= 6: # get all terms < 6^M
    sort([seq(seq(seq(seq(add(6^(m-j)*`if`(member(j,S2),d2,d1),j=1..m)  ,
    S2 = combinat:-powerset({$2..m}) minus {{}}),
    d2 = {$0..5} minus {d1}), d1 = 1..5), m=2..M)]);# Robert Israel, Dec 03 2015
  • Mathematica
    fQ[n_] := Length@ Union@ IntegerDigits[n, 6] == 2; Select[Range@117, fQ] (* Robert G. Wilson v, Dec 03 2015 *)

A032861 Numbers whose base-6 representation Sum_{i=0..m} d(i)*6^i has d(m) > d(m-1) < d(m-2) > ...

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 12, 13, 18, 19, 20, 24, 25, 26, 27, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 73, 74, 75, 76, 77, 80, 81, 82, 83, 109, 110, 111, 112, 113, 116, 117, 118, 119, 123, 124, 125, 145, 146, 147, 148, 149, 152, 153, 154, 155
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007092.
Cf. A032858..A032865 for bases 3..10.
Cf. A306106..A306111 and A297147 for bases 3..9 and 10.

Programs

  • Mathematica
    sdQ[n_]:=Module[{s=Sign[Differences[IntegerDigits[n,6]]]},s==PadRight[{}, Length[ s],{-1,1}]]; Select[Range[0,200],sdQ] (* Harvey P. Dale, Dec 15 2017 *)

Extensions

a(1)=0 inserted by Georg Fischer, Dec 18 2020

A033019 Numbers whose base-6 expansion has no run of digits with length < 2.

Original entry on oeis.org

7, 14, 21, 28, 35, 43, 86, 129, 172, 215, 252, 259, 266, 273, 280, 287, 504, 511, 518, 525, 532, 539, 756, 763, 770, 777, 784, 791, 1008, 1015, 1022, 1029, 1036, 1043, 1260, 1267, 1274, 1281, 1288, 1295, 1512, 1548, 1555, 1562
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007092.

Programs

  • Mathematica
    Select[Range[10000], Min[Length/@Split[IntegerDigits[#, 6]]]>1&] (* Vincenzo Librandi, Feb 05 2014 *)

A166479 Lesser of twin primes, written in base 6.

Original entry on oeis.org

3, 5, 15, 25, 45, 105, 135, 155, 245, 255, 345, 405, 455, 515, 525, 1015, 1035, 1125, 1145, 1235, 1335, 1535, 1555, 2045, 2225, 2345, 2435, 2505, 2545, 3015, 3425, 3445, 3455, 3545, 4025, 4415, 4435, 4505, 4525, 5015, 5155, 5405, 5525, 5545, 10005, 10035
Offset: 1

Views

Author

Jonathan Vos Post, Oct 14 2009

Keywords

Comments

All but the first value is of the form 6n-1, hence in base 6 end with the digit 5.

Crossrefs

Programs

  • Maple
    A001359 := proc(n) option remember: local p: if(n=1)then return 3: fi: p:=procname(n-1): do p:=nextprime(p): if(isprime(p+2))then return p: fi: od: end: A166479 := proc(n) local l: l:=convert(A001359(n),base,6): return op(convert(l,base,10,10^nops(l))): end: seq(A166479(n),n=1..60); # Nathaniel Johnston, May 06 2011
  • Mathematica
    FromDigits[IntegerDigits[#,6]]&/@Transpose[Select[Partition[ Prime[ Range[ 300]],2,1],#[[2]]-#[[1]]==2&]][[1]] (* Harvey P. Dale, Aug 19 2015 *)

Formula

a(n) = A007092(A001359(n)).

Extensions

Extended by Nathaniel Johnston, May 06 2011
Previous Showing 41-50 of 192 results. Next