cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 310 results. Next

A063432 Triangle read by rows in which k-th entry in row n is representation of n in base k, for 1 <= k <= n.

Original entry on oeis.org

1, 11, 10, 111, 11, 10, 1111, 100, 11, 10, 11111, 101, 12, 11, 10, 111111, 110, 20, 12, 11, 10, 1111111, 111, 21, 13, 12, 11, 10, 11111111, 1000, 22, 20, 13, 12, 11, 10, 111111111, 1001, 100, 21, 14, 13, 12, 11, 10, 1111111111, 1010, 101, 22, 20, 14, 13
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2001

Keywords

Comments

Representation of n in base 1 is defined to be a concatenation of n 1's.
It is difficult to write twenty-one in base 11 using decimal digits.
Representation in bases greater than 10 are written in base 10. This is really nasty! - N. J. A. Sloane, Dec 06 2002

Examples

			Rows start (1), (11, 10), (111, 11, 10), (1111, 100, 11, 10), etc.
		

Crossrefs

Cf. A063431.
Columns are truncated versions of A000042, A007088, A007089, A007090, A007091, A007092, A007093, A007094, A007095, A000027 and perhaps A055649, etc.
Without the 1st column becomes A004053.

Programs

  • Mathematica
    f[n_] := Flatten[ Append[ {FromDigits[ Table[1, {n}]] }, Table[ FromDigits[ IntegerDigits[n, i]], {i, 2, n}]]]; Flatten[ Table[ f[n], {n, 1, 10}]] (* Robert G. Wilson v *)

A353148 Decimal repunits written in base 9.

Original entry on oeis.org

0, 1, 12, 133, 1464, 16215, 178366, 2073137, 22814518, 252060710, 2772667811, 31610457022, 347715137243, 3835866520674, 43305642727525, 476363171113776, 5351104882252647, 58862154814780228, 658583714063682520, 7355531854711617721, 82021851512827806032
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(digits((10^n-1)/9, 9));

Formula

a(n) = A007095(A002275(n)).
a(n) = (A055479(n) - 1)/10. - Hugo Pfoertner, Apr 26 2022

A031954 Numbers with exactly two distinct base-9 digits.

Original entry on oeis.org

9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007095.

Programs

  • Maple
    isA031954 := proc(n)
        local dgs,p,s ;
        dgs := convert(convert(n,base,9),set) ;
        if nops(dgs) = 2 then
            true ;
        else
            false ;
        end if ;
    end proc:
    A031954 := proc(n)
        option remember ;
        if n =1 then
            9 ;
        else
            for a from procname(n-1)+1 do
                if isA031954(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A031954(n),n=1..80) ; # R. J. Mathar, Jan 24 2023
  • PARI
    a(n)=n+8+(n+7)\9 \\ Charles R Greathouse IV, Mar 10 2021

A033035 Numbers such that all base 9 digits are odd.

Original entry on oeis.org

1, 3, 5, 7, 10, 12, 14, 16, 28, 30, 32, 34, 46, 48, 50, 52, 64, 66, 68, 70, 91, 93, 95, 97, 109, 111, 113, 115, 127, 129, 131, 133, 145, 147, 149, 151, 253, 255, 257, 259, 271, 273, 275, 277, 289, 291, 293, 295, 307, 309, 311, 313, 415
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007095 (numbers in base 9).

Programs

  • Maple
    f:= proc(n) option remember; local m;
      m:= floor((n-1)/4);
      9*procname(m) + 2*n - 8*m - 1
    end proc:
    f(0):= 0:
    map(f, [$1..100]); # Robert Israel, Jan 23 2019
  • Mathematica
    Select[Range[500],AllTrue[IntegerDigits[#,9],OddQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 14 2015 *)
    Flatten[Table[FromDigits[#,9]&/@Tuples[Range[1,7,2],n],{n,3}]] (* Harvey P. Dale, Jun 13 2020 *)

Formula

a(4n+j) = 9*a(n)+2*j-1 for j=1..4. - Robert Israel, Jan 23 2019

A353107 Base-9 representation of A007908(n).

Original entry on oeis.org

1, 13, 146, 1621, 17836, 207313, 2281451, 25206070, 277266780, 34771513601, 4330564256733, 535110486286816, 65858371163036861, 8202185121837583406, 1113465620754570813253, 134741562223525280514741, 16425841240157671153405780
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.join.to_i.to_s(k).to_i}
    end
    p A(9, 20)

Formula

a(n) = A007095(A007908(n)).

A382418 Numbers with at least one zero in their base-9 representation.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 108, 117, 126, 135, 144, 153, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 180, 189, 198, 207, 216, 225, 234, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 261, 270, 279, 288, 297
Offset: 1

Views

Author

Paolo Xausa, Mar 25 2025

Keywords

Crossrefs

Cf. analogous sequences in other bases: A062289 (base 2), A081605 (base 3), A196032 (base 4), A382415 (base 5), A382416 (base 6), A382413 (base 7), A382417 (base 8), A011540 (base 10).
Cf. A007095, A043453, A255808 (complement).

Programs

  • Mathematica
    Select[Range[0, 300], DigitCount[#, 9, 0] > 0 &]

A004683 Primes written in base 9.

Original entry on oeis.org

2, 3, 5, 7, 12, 14, 18, 21, 25, 32, 34, 41, 45, 47, 52, 58, 65, 67, 74, 78, 81, 87, 102, 108, 117, 122, 124, 128, 131, 135, 151, 155, 162, 164, 175, 177, 184, 201, 205, 212, 218, 221, 232, 234, 238, 241, 254, 267
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A007095.

Programs

  • Magma
    [Seqint(Intseq(NthPrime(n),9)): n in [1..50]]; // G. C. Greubel, Oct 09 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[Prime[n], 9]], {n, 100}] (* Zak Seidov, Apr 25 2016 *)
  • PARI
    a(n)=subst(Pol(digits(prime(n),9)),'x,10) \\ Charles R Greathouse IV, Nov 06 2013
    
  • PARI
    vector(50, n, fromdigits(digits(prime(n), 9))) \\ G. C. Greubel, Oct 09 2018
    

A032864 Numbers whose base-9 representation Sum_{i=0..m} d(i)*9^i has d(m) > d(m-1) < d(m-2) > ...

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 27, 28, 29, 36, 37, 38, 39, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 163, 164, 165, 166, 167, 168, 169, 170, 173
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007095.
Different from A032888.
Cf. A032858..A032865 for bases 3..10.
Cf. A306106..A306111 and A297147 for bases 3..9 and 10.

Extensions

a(1)=0 inserted by Georg Fischer, Dec 18 2020

A037400 Numbers k such that every base-6 digit of k is a base-9 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 21, 104, 108, 115, 129, 194, 212, 215, 252, 259, 271, 280, 352, 370, 388, 417, 504, 651, 756, 757, 758, 759, 760, 761, 762, 763, 777, 913, 922, 928, 932, 949, 976, 994, 1008, 1015, 1030, 1076, 1137, 1147, 1151, 1152
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037400 n = a037400_list !! (n-1)
    a037400_list = filter f [1..] where
       f x = null $ nub (ds 6 x) \\ nub (ds 9 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013

A037403 Numbers k such that every base-7 digit of k is a base-9 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 31, 99, 106, 107, 195, 198, 248, 257, 284, 297, 321, 498, 514, 749, 750, 751, 758, 767, 785, 936, 939, 940, 943, 950, 968, 996, 1028, 1086, 1088, 1110, 1163, 1200, 1218, 1254, 1453, 1471, 1498, 1500, 1502, 1507
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037403 n = a037403_list !! (n-1)
    a037403_list = filter f [1..] where
       f x = null $ nub (ds 7 x) \\ nub (ds 9 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
Previous Showing 51-60 of 310 results. Next