cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 284 results. Next

A292050 Matula-Goebel numbers of semi-binary rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 39, 41, 43, 46, 47, 49, 51, 55, 58, 59, 62, 65, 69, 73, 77, 79, 82, 83, 85, 86, 87, 91, 93, 94, 97, 101, 109, 115, 118, 119, 121, 123, 127, 129, 137, 139, 141, 143, 145
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2017

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Crossrefs

Programs

  • Mathematica
    nn=200;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    semibinQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]<=2,And@@semibinQ/@m]]];
    Select[Range[nn],semibinQ]

A324697 Lexicographically earliest sequence of positive integers > 1 that are prime or whose prime indices already belong to the sequence.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 37, 41, 43, 45, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 79, 81, 83, 85, 89, 93, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 131, 135, 137, 139, 141, 149, 151, 153, 155, 157, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  37: {12}
  41: {13}
  43: {14}
  45: {2,2,3}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=Switch[n,1,False,?PrimeQ,True,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
    Select[Range[100],aQ]

A245704 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = A000040(a(n)), a(A091242(n)) = A002808(a(n)), where A000040(n) = n-th prime, A002808(n) = n-th composite number, and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomial over GF(2), respectively.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 25, 14, 18, 19, 22, 26, 33, 38, 24, 11, 28, 30, 34, 39, 49, 23, 55, 36, 20, 42, 45, 37, 50, 56, 69, 47, 35, 77, 52, 32, 60, 17, 64, 54, 70, 78, 94, 66, 51, 29, 105, 74, 48, 41, 84, 53, 27, 88, 76, 95, 106, 73, 125, 91, 72, 44, 140, 97, 100, 68, 58, 115, 75, 40
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

All the permutations A091203, A091205, A106443, A106445, A106447, A235042 share the same property that the binary representations of irreducible GF(2) polynomials (A014580) are mapped bijectively to the primes (A000040) but while they determine the mapping of corresponding reducible polynomials (A091242) to the composite numbers (A002808) by a simple multiplicative rule, this permutation employs index-recursion also in that case.

Crossrefs

Programs

Formula

a(1) = 1, after which, if A091225(n) is 1 [i.e. n is in A014580], then a(n) = A000040(a(A091226(n))), otherwise a(n) = A002808(a(A091245(n))).
As a composition of related permutations:
a(n) = A227413(A245701(n)).
a(n) = A245822(A091205(n)).
Other identities. For all n >= 1, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A091205 has the same property].
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials (= A014580) to primes and the corresponding representations of reducible polynomials to composites].

A306202 Matula-Goebel numbers of rooted semi-identity trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

Definition: A positive integer belongs to the sequence iff its prime indices greater than 1 are distinct and already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of all unlabeled rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]];
    Select[Range[100],psidQ]

A324743 Number of maximal subsets of {1...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 8, 8, 8, 8, 12, 12, 18, 18, 19, 19, 30, 30, 54, 54, 54, 54, 96, 96, 96, 96, 96, 96, 156, 156, 244, 244, 248, 248, 248, 248, 440, 440, 440, 440, 688, 688, 1120, 1120, 1120, 1120, 1864, 1864, 1864, 1864, 1864, 1864, 3664, 3664, 3664, 3664, 3664
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(8) = 8 maximal subsets:
  {}  {1}  {1}  {2}    {1,3}  {1,3}    {1,3}    {1,3,7}  {1,3,7}
           {2}  {1,3}  {2,4}  {1,5}    {1,5}    {1,5,7}  {1,5,7}
                       {3,4}  {3,4}    {2,4,5}  {2,4,5}  {2,4,5,8}
                              {2,4,5}  {3,4,6}  {2,5,7}  {2,5,7,8}
                                       {4,5,6}  {3,4,6}  {3,4,6,8}
                                                {3,6,7}  {3,6,7,8}
                                                {4,5,6}  {4,5,6,8}
                                                {5,6,7}  {5,6,7,8}
An example for n = 15 is {1,5,7,9,13,15}, with prime indices:
  1: {}
  5: {3}
  7: {4}
  9: {2,2}
  13: {6}
  15: {2,3}
None of these prime indices {2,3,4,6} belong to the subset, as required.
		

Crossrefs

The non-maximal case is A324741. The case for subsets of {2...n} is A324763.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,0,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
    ((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A324753 Number of integer partitions of n containing all prime indices of their parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 8, 14, 16, 23, 29, 40, 49, 66, 81, 109, 133, 172, 211, 274, 332, 419, 511, 640, 775, 965, 1165, 1434, 1730, 2109, 2530, 3083, 3683, 4447, 5308, 6375, 7573, 9062, 10730, 12786, 15104, 17909, 21095, 24937, 29284, 34488, 40421, 47450
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

These could be described as transitive integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 8 integer partitions:
  (1)  (11)  (21)   (211)   (41)     (321)     (421)      (3221)
             (111)  (1111)  (221)    (411)     (2221)     (4211)
                            (2111)   (2211)    (3211)     (22211)
                            (11111)  (21111)   (4111)     (32111)
                                     (111111)  (22111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

The subset version is A324736. The strict case is A324748. The Heinz number version is A290822. An infinite version is A324698.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,30}]

A091204 Factorization and index-recursion preserving isomorphism from nonnegative integers to polynomials over GF(2).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 11, 8, 5, 14, 25, 12, 19, 22, 9, 16, 47, 10, 31, 28, 29, 50, 13, 24, 21, 38, 15, 44, 61, 18, 137, 32, 43, 94, 49, 20, 55, 62, 53, 56, 97, 58, 115, 100, 27, 26, 37, 48, 69, 42, 113, 76, 73, 30, 79, 88, 33, 122, 319, 36, 41, 274, 39, 64, 121, 86, 185
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004. Name changed Aug 16 2014

Keywords

Comments

This "deeply multiplicative" isomorphism is one of the deep variants of A091202 which satisfies most of the same identities as the latter, but it additionally preserves also the structures where we recurse on prime's index. E.g. we have: A091230(n) = a(A007097(n)) and A061775(n) = A091238(a(n)). This is because the permutation induces itself when it is restricted to the primes: a(n) = A091227(a(A000040(n))).
On the other hand, when this permutation is restricted to the nonprime numbers (A018252), permutation A245814 is induced.

Crossrefs

Programs

  • PARI
    v014580 = vector(2^18); A014580(n) = v014580[n];
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i=0; n=2; while((n < 2^22), if(isA014580(n), i++; v014580[i] = n); n++)
    A091204(n) = if(n<=1, n, if(isprime(n), A014580(A091204(primepi(n))), {my(pfs, t, bits, i); pfs=factor(n); pfs[,1]=apply(t->Pol(binary(A091204(t))), pfs[,1]); sum(i=1, #bits=Vec(factorback(pfs))%2, bits[i]<<(#bits-i))}));
    for(n=0, 8192, write("b091204.txt", n, " ", A091204(n)));
    \\ Antti Karttunen, Aug 16 2014

Formula

a(0)=0, a(1)=1, a(p_i) = A014580(a(i)) for primes with index i and for composites a(p_i * p_j * ...) = a(p_i) X a(p_j) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720).
As a composition of related permutations:
a(n) = A245703(A245822(n)).
Other identities.
For all n >= 0, the following holds:
a(A007097(n)) = A091230(n). [Maps iterates of primes to the iterates of A014580. Permutation A245703 has the same property]
For all n >= 1, the following holds:
A091225(a(n)) = A010051(n). [Maps primes bijectively to binary representations of irreducible GF(2) polynomials, A014580, and nonprimes to union of {1} and the binary representations of corresponding reducible polynomials, A091242, in some order. The permutations A091202, A106442, A106444, A106446, A235041 and A245703 have the same property.]

A106350 Semiprimes indexed by primes.

Original entry on oeis.org

6, 9, 14, 21, 33, 35, 49, 55, 65, 86, 91, 115, 122, 129, 142, 159, 183, 187, 206, 215, 218, 247, 259, 287, 303, 319, 323, 334, 339, 358, 403, 415, 446, 451, 482, 489, 511, 527, 537, 553, 573, 581, 626, 633, 655, 667, 698, 737, 753, 758, 771, 791, 794, 835, 851
Offset: 1

Views

Author

Jonathan Vos Post, Apr 30 2005

Keywords

Comments

This is the sequence of the n-th semiprime for n = {2,3,5,7,11,13,17,19,23,29...}. Not to be confused with A106349: Primes indexed by semiprimes. We seek to know what this sequence is asymptotically, as J. B. Rosser's result, subsequently modified, is that prime(n) ~ n*(log n + log log n - 1). hence semiprime(prime(n)) ~ semiprime(n)*(log semiprime(n) + log log semiprime(n) - 1). But what is, asymptotically, semiprime(n)?
Semiprime(n) ~ n log n / log log n, hence a(n) ~ n log^2 n / log log n. - Charles R Greathouse IV, Dec 28 2011

Examples

			a(1) = semiprime(prime(1)) = semiprime(2) = 6.
a(2) = semiprime(prime(2)) = semiprime(3) = 9.
		

Crossrefs

Programs

  • Maple
    A001358 := proc(n) if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a ; end if; end do ; end if ; end proc: A106350 := proc(n) A001358(ithprime(n)) ; end proc: seq(A106350(n),n=1..80) ; # R. J. Mathar, Dec 14 2009
  • Mathematica
    terms = 55;
    semiPrimes = Select[Range[16 terms], PrimeOmega[#] == 2&];
    (* NB If the index Prime[terms] exceeds the size of the table semiPrimes, then the coefficient 16 has to be increased according to the number of terms desired: for instance, for 1000 terms, replace 16 with 32. *)
    a[n_] := semiPrimes[[Prime[n]]];
    Array[a, terms] (* Jean-François Alcover, Apr 13 2020 *)

Formula

a(n) = semiprime(prime(n)). a(n) = A001358(A000040(n)).
a(n) ~ n log^2 n / log log n. - Charles R Greathouse IV, Dec 28 2011

Extensions

All values after a(32) corrected by R. J. Mathar, Dec 14 2009

A279065 Fermi-Dirac primeth recurrence: a(0)=1; thereafter a(n+1) = a(n)-th number of the form p^(2^k) where p is prime and k>=0.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 19, 47, 169, 907, 6829, 67931, 851891, 13034887, 237522877, 5057212439, 123890683831
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2016

Keywords

Comments

Daniel Forgues (see A182979) and Reinhard Zumkeller (see A213925) describe the increasing sequence of positive integers of the form p^(2^k) where p is prime and k>=0 (A050376 or A084400) as Fermi-Dirac primes, because any positive integer has a unique factorization into distinct terms.

Crossrefs

Programs

  • Mathematica
    nn=10000;FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];
    NestWhileList[Part[FDprimeList,#]&,1,#<=Length[FDprimeList]&]
  • PARI
    lista(kmax) = {my(m = 1, c=0, isp); print1(1, ", "); for(k = 1, kmax, isp = isprimepower(k); if(isp && isp >> valuation(isp, 2) == 1, c++); if(c == m, print1(k,", "); m=k));} \\ Amiram Eldar, Oct 05 2023

Extensions

a(15)-a(17) from Amiram Eldar, Oct 05 2023

A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 21, 24, 26, 27, 28, 32, 36, 38, 39, 42, 46, 48, 49, 52, 54, 56, 57, 63, 64, 69, 72, 74, 76, 78, 81, 84, 86, 91, 92, 96, 98, 104, 106, 108, 111, 112, 114, 117, 122, 126, 128, 129, 133, 138, 144, 146, 147, 148, 152, 156, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  39: ((o)(o(o)))
  42: (o(o)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              46: {1,9}             98: {1,4,4}
    2: {1}             48: {1,1,1,1,2}      104: {1,1,1,6}
    4: {1,1}           49: {4,4}            106: {1,16}
    6: {1,2}           52: {1,1,6}          108: {1,1,2,2,2}
    8: {1,1,1}         54: {1,2,2,2}        111: {2,12}
    9: {2,2}           56: {1,1,1,4}        112: {1,1,1,1,4}
   12: {1,1,2}         57: {2,8}            114: {1,2,8}
   14: {1,4}           63: {2,2,4}          117: {2,2,6}
   16: {1,1,1,1}       64: {1,1,1,1,1,1}    122: {1,18}
   18: {1,2,2}         69: {2,9}            126: {1,2,2,4}
   21: {2,4}           72: {1,1,1,2,2}      128: {1,1,1,1,1,1,1}
   24: {1,1,1,2}       74: {1,12}           129: {2,14}
   26: {1,6}           76: {1,1,8}          133: {4,8}
   27: {2,2,2}         78: {1,2,6}          138: {1,2,9}
   28: {1,1,4}         81: {2,2,2,2}        144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}     84: {1,1,2,4}        146: {1,21}
   36: {1,1,2,2}       86: {1,14}           147: {2,4,4}
   38: {1,8}           91: {4,6}            148: {1,1,12}
   39: {2,6}           92: {1,1,9}          152: {1,1,1,8}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
		

Crossrefs

The enumeration of these trees by leaves is A050381.
The locally disjoint version A331873.
The enumeration of these trees by nodes is A331934.
The case with at most one distinct non-leaf branch of any vertex is A331936.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],mseQ]
Previous Showing 51-60 of 284 results. Next