cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A327074 Number of unlabeled connected graphs with n vertices and exactly one bridge.

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 25, 197, 2454, 48201, 1604016, 93315450, 9696046452, 1822564897453, 625839625866540, 395787709599238772, 464137745175250610865, 1015091996575508453655611, 4160447945769725861550193834, 32088553211819016484736085677320, 467409605282347770524641700949750858
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Unlabeled graphs with no bridges are counted by A007146 (unlabeled graphs with spanning edge-connectivity >= 2).

Crossrefs

The labeled version is A327073.
Unlabeled graphs with at least one bridge are A052446.
The enumeration of unlabeled connected graphs by number of bridges is A327077.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.

Programs

Formula

G.f.: (f(x)^2 + f(x^2))/2 where f(x) is the g.f. of A007145. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019

A007145 Number of rooted bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 4, 24, 193, 2420, 47912, 1600524, 93253226, 9694177479, 1822463625183, 625829508087155, 395785845695978077, 464137111800208818956, 1015091598240432264958267, 4160447480034069826186309689, 32088552194861245127627790541334
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); sSolve( gcr, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020

Extensions

Reference gives first 22 terms (terms a(21) and a(22) contain typos).
More terms from R. J. Mathar, Jun 06 2007

A263914 Number of (not necessarily connected) simple bridgeless graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 16, 77, 582, 8002, 205538, 10010657, 912838330, 154634281045, 48597689465264, 28412286324844316, 31024936551325074359, 63533058735488301141874, 244916078109873267213212830, 1783406527132994841804241539063, 24605674622456537969150523621546114
Offset: 1

Views

Author

Eric W. Weisstein, Oct 29 2015

Keywords

Crossrefs

Cf. A000088 (number of simple graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263915 (number of simple bridged graphs).

Formula

a(n) = A000088(n) - A263915(n).
Euler transform of A007146. - Falk Hüffner, Jan 18 2016

Extensions

More terms from A007146 by Falk Hüffner, Jan 18 2016

A263915 Number of (not necessarily connected) simple bridged graphs with n nodes.

Original entry on oeis.org

0, 1, 2, 6, 18, 79, 462, 4344, 69130, 1994511, 106159534, 10456891547, 1904341902688, 641869332391172, 401549418479234409, 467956969039256753054, 1019786043659665470506946, 4171198012616858743636651785, 32134630668466555232483869886654
Offset: 1

Views

Author

Eric W. Weisstein, Oct 29 2015

Keywords

Crossrefs

Cf. A000088 (number of simple graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graph).

Formula

a(n) = A000088(n) - A263914(n).

Extensions

More terms using formula by Falk Hüffner, Jan 18 2016

A324227 Number of simple 4-edge-connected non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 29, 424, 15471, 1249951, 187095386, 48211082866
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Extensions

a(12) added by Georg Grasegger, Jan 07 2025

A324096 Number of simple non-isomorphic n-vertex graphs of edge-connectivity 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 4, 100, 10790, 7772555, 12294282710
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Column k=7 of A263296.

A324097 Number of simple non-isomorphic n-vertex graphs of edge-connectivity 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 150, 36095, 77299066, 348666442245
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Column k=8 of A263296.

A324098 Number of simple non-isomorphic n-vertex graphs of edge-connectivity 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 225, 124046, 835008556
Offset: 1

Views

Author

Jens M. Schmidt, Feb 18 2019

Keywords

Crossrefs

Column k=9 of A263296.
Previous Showing 11-20 of 28 results. Next