cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A361033 a(n) = 3*(4*n)!/(n!*(n+1)!^3).

Original entry on oeis.org

3, 9, 280, 17325, 1513512, 162954792, 20193091776, 2768662192725, 409716429837000, 64358256798795960, 10605621798062141760, 1817833036248401270280, 321997225483126007438400, 58649494641569379926280000, 10941649720331183519046796800, 2084191938036600263793119045925
Offset: 0

Views

Author

Peter Bala, Mar 01 2023

Keywords

Comments

Row 0 of A361032.
The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that A000984(n) is divisible by n + 1 and the result (2*n)!/(n!*(n+1)!) is the n-th Catalan number A000108(n). Similarly, the numbers A008977(n) = (4*n)!/n!^4 appear to have the property that 3*A008977(n) is divisible by (n + 1)^3, leading to the present sequence. Cf. A361028. Do these numbers have a combinatorial interpretation?
Conjecture: a(n) is odd iff n = 2^k - 1 for some k >= 0.

Crossrefs

Programs

  • Maple
    seq(3*(4*n)!/(n!*(n+1)!^3), n = 0..20);
  • Mathematica
    Table[3 (4n)!/(n! ((n+1)!)^3),{n,0,15}] (* Harvey P. Dale, Jul 30 2024 *)

Formula

a(n) = 3*A008977(n)/(n+1)^3.
a(n) = (3/4)*A008977(n+1)/((4*n+1)*(4*n+2)*(4*n+3)).
a(n) = (1/2)*A007228(n)*A007226(n)*A000108(n).
P-recursive: a(n) = 4*(4*n-1)*(4*n-2)*(4*n-3)/(n+1)^3 * a(n-1) with a(0) = 3.
The o.g.f. A(x) satisfies the differential equation
x^3*(1 - 256*x)*A(x)''' + x^2*(6 - 1152*x)*A(x)'' + x*(7 - 816*x)*A(x)' + (1 - 24*x)*A(x) - 3 = 0 with A(0) = 3, A'(0) = 9 and A''(0) = 560.
a(n) ~ 3*sqrt(1/(2*Pi^3)) * 2^(8*n)/n^(9/2).

A334641 a(n) is the total number of down steps between the 3rd and 4th up steps in all 2-Dyck paths of length 3*n.

Original entry on oeis.org

0, 0, 0, 43, 108, 444, 2099, 10683, 56994, 314296, 1776519, 10236081, 59892690, 354886920, 2125117332, 12839859620, 78176677734, 479177993904, 2954360065247, 18309779343549, 114001476318240, 712751759478780, 4472908385838795, 28165267333869435
Offset: 0

Views

Author

Benjamin Hackl, May 07 2020

Keywords

Comments

A 2-Dyck path is a nonnegative lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0.
For n = 3, there is no 4th up step, a(3) = 43 enumerates the total number of down steps between the 3rd up step and the end of the path.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 3}]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
  • PARI
    a(n) = if (n<=2, 0, 2*sum(j=1, 3, binomial(3*j+1, j)*binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020

Formula

a(0) = a(1) = a(2) = 0 and a(n) = 2*Sum_{j=1..3}binomial(3*j+1, j)*binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)) for n > 2.

A334608 a(n) is the total number of down-steps after the final up-step in all 3_1-Dyck paths of length 4*n (n up-steps and 3n down-steps).

Original entry on oeis.org

0, 5, 34, 236, 1714, 12922, 100300, 796572, 6443536, 52909593, 439896626, 3695917940, 31331587252, 267669458420, 2302188456120, 19918434257052, 173240112503520, 1513821095788420, 13283883136738344, 117009704490121520, 1034217260142108570, 9169842145476773250, 81537271617856588380
Offset: 0

Views

Author

Andrei Asinowski, May 13 2020

Keywords

Comments

A 3_1-Dyck path is a lattice path with steps U=(1, 3), d=(1, -1) that starts at (0,0), stays (weakly) above y=-1, and ends at the x-axis.

Examples

			For n=1, a(1)=5 is the total number of down-steps after the last up-step in Uddd, dUdd.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2 * Binomial[4*n + 6, n + 1]/(4*n + 6) - 4 * Binomial[4*n + 2, n]/(4*n + 2); Array[a, 23, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [2*binomial(4*(n + 1) + 2, n + 1)/(4*(n + 1) + 2) - 4*binomial(4*n + 2, n)/(4*n + 2) for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(n) = 2*binomial(4*(n+1)+2, n+1)/(4*(n+1)+2) - 4*binomial(4*n+2, n)/(4*n+2).

A334650 a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.

Original entry on oeis.org

0, 6, 31, 158, 975, 6639, 48050, 362592, 2820789, 22460120, 182141553, 1499143282, 12490923757, 105150960654, 892973346300, 7640934031920, 65813450140017, 570160918044288, 4964875184429660, 43431741548248440, 381496856026500220, 3363457643008999635
Offset: 0

Views

Author

Benjamin Hackl, May 13 2020

Keywords

Comments

A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
For n = 1, there is no 2nd up step, a(1) = 6 enumerates the total number of down steps between the 1st up step and the end of the path.

Examples

			For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) + 9*binomial(4*(n-1), n-1)/n - 6*[n=1] for n > 0, where [ ] is the Iverson bracket.

A241262 Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1

Views

Author

Jean-François Alcover, Apr 18 2014

Keywords

Comments

About the "root estimation" question asked in MathOverflow, one can check (at least numerically) that, for instance with k = 4 and a = 1/11, the series a^-1 + (k - 1) + Sum_{n>=} (-1)^n*binomial(n*k, n+1)/n*a^n evaluates to the positive solution of x^k = (x+1)^(k-1).
Row 1 is A000217 (triangular numbers),
Row 2 is A006331 (twice the square pyramidal numbers),
Row 3 is A067047(3n) = lcm(3n, 3n+1, 3n+2, 3n+3)/12 (from column r=4 of A067049),
Row 4 is A222715(2n) = (n-1)*n*(2n-1)*(4n-3)*(4n-1)/15,
Row 5 is not in the OEIS.
Column 1 is A000108 (Catalan numbers),
Column 2 is A007226 left shifted 1 place,
Column 4 is A007228 left shifted 1 place,
Column 5 is A124724 left shifted 1 place,
Column 6 is not in the OEIS.

Examples

			Array begins:
    1,    3,     6,     10,      15,      21, ...
    2,   10,    28,     60,     110,     182, ...
    5,   42,   165,    455,    1020,    1995, ...
   14,  198,  1092,   3876,   10626,   24570, ...
   42, 1001,  7752,  35420,  118755,  324632, ...
  132, 5304, 57684, 339300, 1391280, 4496388, ...
  etc.
		

References

  • N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten
Previous Showing 11-15 of 15 results.