cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A143020 Sum of the distances from a fixed node (root) to the next node in all non-crossing graphs on n nodes on a circle.

Original entry on oeis.org

1, 5, 31, 218, 1658, 13293, 110675, 947870, 8297926, 73924162, 668038006, 6108962580, 56426393268, 525673683069, 4933634156571, 46604425575734, 442753710351950, 4227598589181750, 40549714320544770, 390522305786747820
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Examples

			a(3)=5 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the distances from A to B are 1, 1, 1 and 2, respectively.
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q,i)*binomial(r+p-1-i, r-1),i=0..min(p,q)) end proc: T:=proc(n,k) options operator, arrow: k*L(n-k-1, 3*n-k-4,n-1)/(n-1) end proc: seq(add(k*T(n,k),k=1..n-1),n=2..22);
  • Mathematica
    t[n_, k_] := k*L[n - k - 1, 3*n - k - 4, n-1]/(n-1); L[p_, q_, r_] := Sum[ Binomial[q, i]*Binomial[r + p - 1 - i, r - 1], {i, 0, Min[p, q]}]; a[n_] := Sum[k*t[n, k], {k, 1, n-1}] ; Table[a[n], {n, 2, 21}] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    Vec((g->g*(g-x)/x)(x + x*serreverse((x-x^2)/(1+x)^3 + O(x^20)))) \\ Andrew Howroyd, Nov 17 2017
    
  • PARI
    L(p,q,r)={sum(i=0, min(p,q), binomial(q,i)*binomial(r+p-1-i,r-1))}
    a(n)=sum(k=1, n-1, k^2*L(n-k-1,3*n-k-4, n-1)/(n-1)); \\ Andrew Howroyd, Nov 17 2017

Formula

a(n) = Sum_{k=1..n-1} k*T(n,k), where T(n,k) = k*L(n-k-1,3n-k-4,n-1)/(n-1) (n >= 2, 1 <= k <= n-1), with L(p,q,r)=[u^p](1+u)^q/(1-u)^r = Sum[binomial(q,i)binomial(r+p-1-i,r-1), i=0..min(p,q)] (T(n,k) is A143018).
G.f.: g(g-z)/z, where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3zg + 2z^2 = 0 (A007297).
a(n) = Sum_{k=1..n-1} k*A143018(n, k).
Conjecture: -(n-1) *(n+1) *(39*n^2-136*n+60) *a(n) +60 *(-18*n^2+57*n-7) *a(n-1) +12 *(3*n-7) *(3*n-8) *(39*n^2-58*n-37) *a(n-2)=0. - R. J. Mathar, May 10 2018

A143023 Sum of the root degrees over all non-crossing connected graphs on n nodes on a circle (by root we mean a distinguished node).

Original entry on oeis.org

1, 6, 41, 306, 2422, 19980, 169941, 1479786, 13127114, 118217268, 1077955034, 9932655348, 92342765868, 865126386072, 8159523358029, 77411610053658, 738263424935170, 7073522484902820, 68056887469098990, 657269559836605980
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Comments

The number of non-crossing connected graphs on n nodes on a circle is given in A007297.

Examples

			a(3)=6 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the root, say A, has degrees 2, 2, 1 and 1, respectively.
		

Crossrefs

Programs

  • Maple
    eq:=G*(1-G)-z*(1+G)^3: G:=RootOf(eq,G): Gser:=series(z*G*(1+G)/(1-G),z=0,25): seq(coeff(Gser,z,n),n=2..21); # end
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q,i)*binomial(r+p-1-i,r-1),i=0..min(p,q)) end proc: a:=proc(n) options operator, arrow: (L(n-2,3*n-2, n+1)+L(n-3,3*n-3,n))/(n-1) end proc: seq(a(n),n=2..21);
  • Mathematica
    L[p_, q_, r_] := Sum[ Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; t[n_, k_] := 2^(k-1)*(k*L[n - k - 1, 3*n - k - 4, n - 2] - L[n - k - 2, 3*n - k - 3, n-1])/(n-1); t[2, 1] = 1; a[n_] := Sum[ k*t[n, k], {k, 1, n-1}]; Table[a[n], {n, 2, 21}] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    {my(n=25); my(g=serreverse(x*(1-x)/(1+x)^3 + O(x*x^n))); Vec(g*(1+g)/(1-g))} \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) = (L(n-2, 3n-2, n+1) + L(n-3, 3n-3, n))/(n-1) where L(p,q,r)=[u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i) * binomial(r+p-1-i, r-1).
G.f.: zG(1+G)/(1-G) where G=G(z) satisfies G(1-G)=z(1+G)^3.
a(n) = Sum_{k=1..n-1} k*A143022(n,k).
D-finite with recurrence 5*n*(n-1)*a(n) -18*(n-1)*(n-3)*a(n-1) +12*(-45*n^2+180*n-178)*a(n-2) +216*(3*n-10)*(3*n-11)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A244469 a(0) = 0, thereafter, a(n) = 2^(2*n-1)*( binomial((3*n-1)/2,n) - binomial(3*n/2, n)/3 ).

Original entry on oeis.org

0, 1, 7, 58, 515, 4746, 44758, 428772, 4154403, 40599130, 399429602, 3950996556, 39255152846, 391466112324, 3916110379020, 39281346256008, 394942611929379, 3978982062756090, 40160256911157610, 405995113593507900, 4110284071450416090, 41666530928566504620, 422876855107176561780
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else Round(2^(2*n-1)*(Gamma((3*n+1)/2)/Gamma((n+1)/2) - Gamma((3*n+2)/2)/(3*Gamma((n+2)/2)))/Factorial(n)): n in [0..30]]; // G. C. Greubel, Apr 17 2019
    
  • Maple
    f4:=n->-(2^(2*n-1)/3)*binomial(3*n/2,n) + 2^(2*n-1)*binomial((3*n-1)/2,n);
    [seq(f4(n),n=1..40)]; # then prepend f4(0)=0.
  • Mathematica
    Join[{0}, Table[-(2^(2 n - 1)/3) Binomial[3 n/2, n] + 2^(2 n - 1) Binomial[(3 n - 1)/2, n], {n, 1, 30}]] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    {a(n) = if(n==0,0, 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3) )}; \\ G. C. Greubel, Apr 17 2019
    
  • Sage
    def a(n):
       if n==0: return 0
       else: return 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3)
    [a(n) for n in (0..30)] # G. C. Greubel, Apr 17 2019

Formula

G.f.: g'(x)/g(x)-1, g(x)=(2*sqrt(9*x+1)*sin(arcsin((54*x^2+27*x+2)/(2*(9*x+1)^(3/2)))/3))/3-1/3. - Vladimir Kruchinin, Apr 14 2019
From Peter Bala, Mar 05 2022: (Start)
a(n) = (1/n)*Sum_{k = 0..n} k*2^(n-k)*binomial(n+k-1,k)*binomial(2*n-k-1,n-k) for n >= 1.
a(n) = [x^n] G(x)^n = [x^n] 1/(1 - x*C(2*x))^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and G(x) is the g.f. of A064062.
n*(n-1)*(6*n-7)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-5)*(6*n-1)*(3*n-4)*a(n-2) with a(1) = 1 a(2) = 7.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 4*x^2 + 23*x^3 + 156*x^4 + ... is the g.f. of A007297.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

A143021 Number of vertices of degree 1 in all non-crossing connected graphs on n points on a circle.

Original entry on oeis.org

2, 6, 36, 270, 2244, 19740, 179880, 1678446, 15927780, 153055188, 1485010488, 14518525164, 142821228648, 1412109087480, 14021321053392, 139725123309486, 1396698760714788, 13998927825197220, 140638610864578200
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Examples

			a(3)=6 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the vertices of degree 1 are (none), {B,C}, {A,C} and {A,B}.
		

Crossrefs

Programs

  • Maple
    g:=-1/3+(2/3)*sqrt(1+9*z)*sin((1/3)*arcsin(((2+27*z+54*z^2)*1/2)/(1+9*z)^(3/2))): ser:=series(z*(diff(g^2,z)),z=0,25): seq(coeff(ser,z,n), n=2..21);
  • Mathematica
    terms = 19;
    g[x_] = 0; Do[g[x_] = g[x]^2 + x (1+g[x])^3 + O[x]^(terms+2), {terms+2}];
    Drop[CoefficientList[(x+x g[x])^2+O[x]^(terms+2), x], 2] Range[2, terms+1] (* Jean-François Alcover, Jul 29 2018, after A089436 and Andrew Howroyd *)
  • PARI
    { my(n=30); Vec(deriv((x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n)))^2)) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) = n*A089436(n).
G.f.: z*(d/dz)g^2, where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3zg + 2z^2 = 0 (A007297).
D-finite with recurrence (n-1)*(n-2)*a(n) -34*(n-2)*(n-4)*a(n-1) +4*(29*n^2-396*n+937)*a(n-2) +24*(153*n^2-1071*n+1810)*a(n-3) -2688*(3*n-14)*(3*n-16)*a(n-4)=0. - R. J. Mathar, Jul 22 2022

A143024 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle having root (a distinguished node) of degree 1 and having k edges (n >= 2, 1 <= k <= 2n-4).

Original entry on oeis.org

1, 0, 2, 0, 0, 7, 2, 0, 0, 0, 30, 20, 4, 0, 0, 0, 0, 143, 156, 65, 10, 0, 0, 0, 0, 0, 728, 1120, 720, 224, 28, 0, 0, 0, 0, 0, 0, 3876, 7752, 6783, 3192, 798, 84, 0, 0, 0, 0, 0, 0, 0, 21318, 52668, 58520, 36960, 13860, 2904, 264, 0, 0, 0, 0, 0, 0, 0, 0, 120175, 354200, 478170
Offset: 2

Views

Author

Emeric Deutsch, Jul 31 2008

Keywords

Comments

Row n contains 2n-4 terms, the first n-2 of which are 0.
Row sums yield A089436.
T(n,n-1) = A006013(n-2).
Sum_{k=2..2n-4} k*T(n,k) = A143025.

Examples

			T(3,2)=2 because we have {AB,BC} and {AC, BC} (A is the root).
Triangle starts:
  1;
  0,   2;
  0,   0,   7,   2;
  0,   0,   0,  30,  20,   4;
  0,   0,   0,   0, 143, 156,  65,  10;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: 2*binomial(k-2,n-3)*binomial(3*n-5,2*n-k-4)/(n-2) end proc: 1; for n from 3 to 10 do 0, seq(T(n,k),k=2..2*n-4) end do; % yields sequence in triangular form

Formula

T(n,k) = 2*binomial(k-2, n-3)*binomial(3n-5, 2n-k-4)/(n-2) (n >= 3, 2 <= k <= 2n-4); T(2,1)=1; T(2,k)=0 (k >= 2).
The trivariate g.f. G=G(t,s,z) for non-crossing connected graphs on nodes on a circle, with respect to number of nodes (marked by z), number of edges (marked by t) and degree of root (marked by s) is G=z + tszg^2/[z-ts(g - z + g^2)], where g=g(t,z) satisfies tg^3 + tg^2 - (1 + 2t)zg +(1 + t)z^2 = 0 (see Domb & Barrett, Eq. (47); Flajolet & Noy, Eq. (18)).

A291536 Expansion of the series reversion of x*(1 + 4*x + x^2)/(1 - x)^4.

Original entry on oeis.org

1, -8, 101, -1544, 26190, -474144, 8975229, -175492664, 3516970490, -71858843264, 1491301438354, -31349284476496, 666133734882748, -14284509655611840, 308734263333717021, -6718525508918998872, 147085140049822666626, -3237191565662618280384, 71584853778205231503750
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 25 2017

Keywords

Comments

Reversion of g.f. for the cubes (A000578).

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 19}], x], x]]

Formula

G.f. A(x) satisfies: A(x)*(1 + 4*A(x) + A(x)^2)/(1 - A(x))^4 = x.
a(n) ~ -(-1)^n * (5*sqrt(6) - 12) * 2^(3*n-2) * 3^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 11 2017
D-finite with recurrence 7*n*(n-1)*(n+1)*a(n) +4*n*(n-1)*(58*n-83)*a(n-1) -36*(n-1)*(16*n^2-80*n+155)*a(n-2) +432*(-96*n^3+720*n^2-1794*n+1495)*a(n-3) +6912*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Jan 25 2023

A306551 Number of non-double-crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 863, 3999, 19880, 105134, 587479, 3449505
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Comments

Two blocks of a set partitions double-cross each other if they are of the form {{...a...b...c...},{...x...y...z...}} for some a < x < b < y < c < z or x < a < y < b < z < c.

Examples

			Most small set partitions are not double-crossing. The smallest that is double-crossing is {{1,3,5},{2,4,6}}.
		

Crossrefs

Programs

  • Mathematica
    nonXXQ[stn_]:=!MatchQ[stn,{_,{_,a_,_,b_,_,c_,_},_,{_,x_,_,y_,_,z_,_},_}/;a_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],nonXXQ]],{n,0,8}]

A306558 Number of double-crossing set partitions of {1,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 14, 141, 1267, 10841, 91091, 764092
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Comments

Two blocks of a set partitions double-cross each other if they are of the form {{...a...b...c...},{...x...y...z...}} for some a < x < b < y < c < z or x < a < y < b < z < c.

Examples

			The a(7) = 14 double-crossing set partitions:
  {{1,3,5},{2,4,6,7}}
  {{1,3,6},{2,4,5,7}}
  {{1,4,6},{2,3,5,7}}
  {{1,2,4,6},{3,5,7}}
  {{1,3,4,6},{2,5,7}}
  {{1,3,5,6},{2,4,7}}
  {{1,3,5,7},{2,4,6}}
  {{1},{2,4,6},{3,5,7}}
  {{1,3,5},{2,4,6},{7}}
  {{1,3,5},{2,4,7},{6}}
  {{1,3,6},{2,4,7},{5}}
  {{1,3,6},{2,5,7},{4}}
  {{1,4,6},{2},{3,5,7}}
  {{1,4,6},{2,5,7},{3}}
		

Crossrefs

Programs

  • Mathematica
    croXXQ[stn_]:=MatchQ[stn,{_,{_,a_,_,b_,_,c_,_},_,{_,x_,_,y_,_,z_,_},_}/;a_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],croXXQ]],{n,0,8}]
Previous Showing 41-48 of 48 results.