cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 94 results. Next

A088696 Triangle read by rows, giving number of partial quotients in continued fraction representation of terms in the left branch of the infinite Stern-Brocot tree.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 6
Offset: 1

Views

Author

Gary W. Adamson, Oct 07 2003

Keywords

Comments

Each next row is the last row concatenated with the last row reversed with elements incremented. A000120 is produced by a similar principle, omitting the reversal step. [Edited by Andrey Zabolotskiy, Mar 27 2020]
From Gary W. Adamson, Aug 08 2009: (Start)
The row with 8 terms: (1, 2, 3, 2, 3, 4, 3, 2); can be used to generate the numbers of hydrogen bonds per codon/anti-codon; superimposed on the DNA codon array of A147995 as follows: top row and left column of an 8 X 8 array is composed of the 8 terms (1, 2, 3, 2, 3, 4, 3, 2). If rows and columns have an offset of "1", then odd rows circulate downward starting from the position (n,n). Even rows circulate in the opposite direction starting from position (n,n).
This produces the array:
1 2 3 2 3 4 3 2
2 1 2 3 4 3 2 3
3 2 1 2 3 2 3 4
2 3 2 1 2 3 2 3
3 4 3 2 1 2 3 2
4 3 2 3 2 1 4 3
3 2 3 4 3 2 1 2
2 3 4 3 2 3 2 1
...
This produces a semi-magic square with a diagonal of (1,1,1,...). Using the simple replacement rule ("complement to 10"): (1->9); (2->8); (3->7); (4->6) we obtain the chart of DNA hydrogen bonds per codon/anti-codon shown in A147995. Top row of the hydrogen bond array as well as left column = (9, 8, 7, 8, 7, 6, 7, 8).
Alternatively, using the circulant rule for alternate rows and putting all 9's along the diagonal, we obtain the chart of hydrogen bonds. (End)
Rows tend to A088748 (which can also be generated from the dragon curve, A014577). - Gary W. Adamson, Aug 30 2009
Positions of records are A081254. - Andrey Zabolotskiy, Mar 27 2020

Examples

			Fractions in the left branch of the infinite Stern-Brocot tree (the fractions between 0 and 1), are:
  1/2;
  1/3, 2/3;
  1/4, 2/5, 3/5, 3/4;
  1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5;
  ...
and their corresponding continued fraction representations are:
  [2]
  [3] [1,2]
  [4] [2,2] [1,1,2] [1,3]
  [5] [3,2] [2,1,2] [2,3] [1,1,3] [1,1,1,2] [1,2,2] [1,4]
  ...
with the number of terms in each continued fraction representation generating the present triangle:
  1
  1 2
  1 2 3 2
  1 2 3 2 3 4 3 2
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 116-117.

Crossrefs

Programs

  • Haskell
    a088696 n = a088696_list !! (n-1)
    a088696_list = f [1] where
       f (x:xs) = x : f (xs ++ [x + 1 - x `mod` 2, x + x `mod` 2])
    -- Reinhard Zumkeller, Mar 07 2011
    
  • Mathematica
    sb[n_List] := Block[{k = l = Length[n], a = n}, While[k > 1, a = Insert[ a, (Numerator[ a[[k]]] + Numerator[ a[[k - 1]]]) / (Denominator[ a[[k]]] + Denominator[ a[[k - 1]]]), k]; k-- ]; a]; sbn[n_] := Complement[ Nest[ sb, {0, 1}, n], Nest[ sb, {0, 1}, n - 1]]; f[n_] := Length /@ (ContinuedFraction /@ sbn[n]) - 1; Flatten[ Table[ f[n], {n, 7}]] (* Robert G. Wilson v, Jun 09 2004 *)
    Flatten[NestList[Join[#, Reverse[#] + 1] &, {1}, 7]]; (* from A164738, Jon Maiga, Sep 26 2019 *)
  • Python
    a = [[1]]
    for n in range(6):
        a.append(a[-1] + [x+1 for x in a[-1][::-1]])
    print(sum(a, []))
    # Andrey Zabolotskiy, Mar 27 2020, after Jon Maiga

Extensions

Edited and extended by Robert G. Wilson v, Jun 09 2004

A268087 a(n) = A162909(n) + A162910(n).

Original entry on oeis.org

2, 3, 3, 5, 4, 4, 5, 8, 7, 5, 7, 7, 5, 7, 8, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 21, 18, 14, 19, 16, 11, 17, 19, 14, 13, 7, 11, 17, 13, 15, 18, 18, 15, 13, 17, 11, 7, 13, 14, 19, 17, 11, 16, 19, 14, 18, 21, 34, 29, 23, 31, 25, 17, 27, 30, 25, 23, 13, 20, 29, 22, 26, 31, 23, 19, 17, 22, 13, 8, 16, 17, 27
Offset: 1

Views

Author

Yosu Yurramendi, Jan 26 2016

Keywords

Comments

If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m >= 0:
2,
3, 3,
5, 4, 4, 5,
8, 7, 5, 7, 7, 5, 7, 8,
13,11, 9,12, 9, 6,10,11,11,10,6, 9,12, 9,11,13,
21,18,14,19,16,11,17,19,14,13,7,11,17,13,15,18,18,15,13,17,11,7,13,14,19,17,11,16, ...
a(n) is palindromic in each level m >= 0 (ranks between 2^m and 2^(m+1)-1), because in each level m >= 0 A162910 is the reverse of A162909:
a(2^m + k) = a(2^(m+1) - 1 - k), m >= 0, 0 <= k < 2^m.
All columns have the Fibonacci sequence property: a(2^(m+2) + k) = a(2^(m+1) + k) + a(2^m + k), m >= 0, 0 <= k < 2^m (empirical observations).
a(2^m + k) = A162909(2^(m+2) + k), a(2^m + k) = A162909(2^(m+1)+ 2^m + k), a(2^m + k) = A162910(2^(m+1) + k), m >= 0, 0 <= k < 2^m (empirical observations).
a(n) = A162911(n) + A162912(n), where A162911(n)/A162912(n) is the bit reversal permutation of A162909(n)/A162910(n) in each level m >= 0 (empirical observations).
a(n) = A162911(2n+1), a(n) = A162912(2n) for n > 0 (empirical observations). n > 1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), which is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A162909(n)/A162910(n) is also an enumeration system of all positive rationals (Bird system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306.
The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), and A086592 (A020650+A020651).

Examples

			m = 3, k = 6: a(38) = 17, a(22) = 10, a(14) = 7.
		

Crossrefs

Programs

  • PARI
    a(n) = my(x=1, y=1); for(i=0, logint(n, 2), if(bittest(n, i), [x, y]=[x+y, x], [x, y]=[y, x+y])); x \\ Mikhail Kurkov, Mar 10 2023

Formula

a(2^(m+2)+k) = a(2^(m+1)+k) + a(2^m+k) with m = 0, 1, 2, ... and 0 <= k < 2^m (empirical observation).
a(A059893(n)) = a(n) for n > 0. - Yosu Yurramendi, May 30 2017
From Yosu Yurramendi, May 14 2019: (Start)
Take the smallest m > 0 such that 0 <= k < 2^(m-1), and choose any M >= m,
a((1/3)*( A016921(2^(m-1)+k)*4^(M-m)-1)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k ).
a((1/3)*(2*A016921(2^(m-1)+k)*4^(M-m)-2)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k ) + a(2^(m-1)+k).
a((1/3)*( A016969(2^(m-1)+k)*4^(M-m)-2)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k+1).
a((1/3)*(2*A016969(2^(m-1)+k)*4^(M-m)-1)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k+1) + a(2^(m-1)+k). (End)
a(n) = A007306(A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

A288002 L-fusc, sequence l of the mutual diatomic recurrence pair: l(1)=0, r(1)=1, l(2n) = l(n), r(2n) = r(n), l(2n+1) = l(n)+r(n), r(2n+1) = l(n+1)+r(n+1), where r(n) = A288003(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 3, 1, 2, 2, 3, 0, 1, 1, 4, 1, 3, 3, 5, 1, 2, 2, 5, 2, 3, 3, 4, 0, 1, 1, 5, 1, 4, 4, 7, 1, 3, 3, 8, 3, 5, 5, 7, 1, 2, 2, 7, 2, 5, 5, 8, 2, 3, 3, 7, 3, 4, 4, 5, 0, 1, 1, 6, 1, 5, 5, 9, 1, 4, 4, 11, 4, 7, 7, 10, 1, 3, 3, 11, 3, 8, 8
Offset: 1

Views

Author

I. V. Serov, Jun 10 2017

Keywords

Comments

Define a sequence chf(n) of Christoffel words over an alphabet {-,+}:
chf(1) = '-',
chf(2*n+0) = negate(chf(n)),
chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))).
Each chf(n) word has the length fusc(n) = A002487(n) and splits uniquely into two parent Christoffel words - the left Christoffel word lef(n) of the length l-fusc(n) = a(n) and the right Christoffel word rig(n) of the length r-fusc(n) = A288003(n). See the example below.

Examples

			The odd bisection CHF(n) of the chf(n) sequence shifted rightwards by a(n) determines the longest overlap of the adjacent CHF words. Note that the first overlapping letters differ for n == 2^k or equivalently when a(n)==0.
To construct the word CHF(n+1) from the word CHF(n): cut off the word negate(lef(n)) of length a(n) at the left side of CHF(n), add the word negate(rig(n)) of length A288003(n) at the right side of CHF(n) and negate the first letter of the new word iff a(n)==0.
n chf(n)  A070939(n) A002487(n) lef(n) a(n)       CHF(n)
                     fusc(n)           l-fusc(n)  bisection of chf(n)
1  '-'     1          1          ''     0         '-'
2  '+'     2          1          ''     0         '+-'
3  '+-'    2          2         '+'     1         '--+'
4  '-'     3          1          ''     0          '-++'
5  '--+'   3          3         '-'     1          '+++-'
6  '-+'    3          2         '-'     1           '++-+-'
7  '-++'   3          3        '-+'     2            '+-+--'
8  '+'     4          1          ''     0              '+---'
9  '+++-'  4          4         '+'     1              '----+'
10 '++-'   4          3         '+'     1               '---+--+'
11 '++-+-' 4          5       '++-'     3                '--+--+-+'
12 '+-'    4          2         '+'     1                   '--+-+-+'
13 '+-+--' 4          5        '+-'     2                    '-+-+-++'
14 '+--'   4          3        '+-'     2                      '-+-++-++'
15 '+---'  4          4       '+--'     3                        '-++-+++'
16 '-'     5          1          ''     0                           '-++++'
17 '----+' 5          5         '-'     1                           '+++++-'
		

Crossrefs

Programs

  • Python
    def l(n): return 0 if n==1 else l(n//2) if n%2==0 else l((n - 1)//2) + r((n - 1)//2)
    def r(n): return 1 if n==1 else r(n//2) if n%2==0 else l((n + 1)//2) + r((n + 1)//2)
    print([l(n) for n in range(1, 151)]) # Indranil Ghosh, Jun 11 2017

Formula

a(n) = A002487(n) - A288003(n). [l-fusc(n) = fusc(n) - r-fusc(n).]
gcd(a(n),A288003(n)) = gcd(a(n),A002487(n)) = 1.
a(n) = A007306(n) - A287896(n).
a(n) = A007306(n) mod A002487(n).

A283986 a(n) = A002487(n-1) OR A002487(n), where OR is bitwise-or (A003986).

Original entry on oeis.org

1, 1, 3, 3, 3, 3, 3, 3, 5, 7, 7, 7, 7, 7, 7, 5, 5, 5, 7, 7, 11, 13, 7, 7, 7, 7, 13, 11, 7, 7, 5, 5, 7, 7, 13, 13, 15, 15, 15, 11, 11, 11, 13, 13, 13, 15, 15, 11, 11, 15, 15, 13, 13, 13, 11, 11, 11, 15, 15, 15, 13, 13, 7, 7, 7, 7, 15, 15, 15, 15, 13, 13, 15, 15, 27, 23, 23, 27, 15, 15, 15, 15, 27, 27, 29, 29, 31, 23, 21, 29, 31, 23, 23, 25, 11, 11, 11, 11, 25
Offset: 1

Views

Author

Antti Karttunen, Mar 21 2017

Keywords

Crossrefs

Odd bisection of A283976.
Cf. A283973 (positions where coincides with A007306, equally, with A283987).

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[BitOr[a[n - 1], a@ n], {n, 120}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
    for(n=1, 101, print1(bitor(A(n - 1), A(n))", ")) \\ Indranil Ghosh, Mar 23 2017
    
  • Python
    from functools import reduce
    def A283986(n): return sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0)))|sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n-1)[-1:2:-1],(1,0))) # Chai Wah Wu, May 05 2023
  • Scheme
    (define (A283986 n) (A003986bi (A002487 (- n 1)) (A002487 n))) ;; Where A003986bi implements bitwise-OR (A003986).
    

Formula

a(n) = A002487(n-1) OR A002487(n), where OR is bitwise-or (A003986).
a(n) = A283987(n) + A283988(n).
a(n) = A007306(n) - A283988(n).
a(n) = A283976((2*n)-1).

A283987 a(n) = A002487(n-1) XOR A002487(n), where XOR is bitwise-xor (A003987).

Original entry on oeis.org

1, 0, 3, 3, 2, 1, 1, 2, 5, 7, 6, 7, 7, 6, 7, 5, 4, 1, 3, 4, 11, 13, 2, 5, 5, 2, 13, 11, 4, 3, 1, 4, 7, 3, 12, 13, 15, 12, 13, 9, 8, 3, 5, 8, 9, 11, 14, 11, 11, 14, 11, 9, 8, 5, 3, 8, 9, 13, 12, 15, 13, 12, 3, 7, 6, 1, 13, 14, 11, 7, 4, 9, 11, 4, 25, 21, 22, 27, 7, 14, 13, 5, 24, 27, 29, 24, 31, 23, 20, 29, 31, 20, 23, 25, 2, 9, 9, 2, 25, 23, 20, 31, 29, 20, 23
Offset: 1

Views

Author

Antti Karttunen, Mar 21 2017

Keywords

Crossrefs

Odd bisection of A283977.
Cf. A283973 (positions where coincides with A007306, or equally, with A283986).

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[BitXor[a[n - 1], a@ n], {n, 120}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
    for(n=1, 120, print1(bitxor(A(n - 1), A(n)), ", ")) \\ Indranil Ghosh, Mar 23 2017
    
  • Python
    from functools import reduce
    def A283987(n): return sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0)))^sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n-1)[-1:2:-1],(1,0))) if n>1 else 1 # Chai Wah Wu, May 05 2023
  • Scheme
    (define (A283987 n) (A003987bi (A002487 (- n 1)) (A002487 n))) ;; Where A003987bi implements bitwise-XOR (A003987).
    

Formula

a(n) = A002487(n-1) XOR A002487(n), where XOR is bitwise-xor (A003987).
a(n) = A283986(n) - A283988(n).
a(n) = A007306(n) - 2*A283988(n).
a(n) = A283977((2*n)-1).

A283988 a(n) = A002487(n-1) AND A002487(n), where AND is bitwise-and (A004198).

Original entry on oeis.org

0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 4, 4, 3, 0, 0, 5, 2, 2, 5, 0, 0, 3, 4, 4, 1, 0, 4, 1, 0, 0, 3, 2, 2, 3, 8, 8, 5, 4, 4, 1, 0, 0, 1, 4, 4, 5, 8, 8, 3, 2, 2, 3, 0, 0, 1, 4, 0, 1, 6, 2, 1, 4, 8, 9, 4, 4, 11, 2, 2, 1, 0, 8, 1, 2, 10, 3, 0, 0, 5, 0, 0, 1, 0, 0, 3, 0, 0, 9, 2, 2, 9, 0, 0, 3, 0, 0, 1, 0, 0, 5, 0, 0, 3, 10, 2, 1, 8, 0, 1, 2, 2, 11, 4
Offset: 1

Views

Author

Antti Karttunen, Mar 21 2017

Keywords

Crossrefs

Odd bisection of A283978.
Cf. A283973 (positions of zeros), A283974 (nonzeros).

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[BitAnd[a[n - 1], a@ n], {n, 120}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
    for(n=1, 120, print1(bitand(A(n - 1), A(n)),", ")) \\ Indranil Ghosh, Mar 23 2017
    
  • Python
    from functools import reduce
    def A283988(n): return sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0)))&sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n-1)[-1:2:-1],(1,0))) if n>1 else 0 # Chai Wah Wu, May 05 2023
  • Scheme
    (define (A283988 n) (A004198bi (A002487 (- n 1)) (A002487 n)))  ;; Where A004198bi implements bitwise-AND (A004198).
    

Formula

a(n) = A002487(n-1) AND A002487(n), where AND is bitwise-and (A004198).
a(n) = A283986(n) - A283987(n).
a(n) = A007306(n) - A283986(n) = (A007306(n) - A283987(n))/2.
a(n) = A283978((2*n)-1).

A368546 Alternative version of the Markov tree A327345.

Original entry on oeis.org

5, 13, 29, 34, 194, 433, 169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, 233, 9077, 135137, 51641, 294685, 4400489, 1686049, 43261, 96557, 8399329, 48928105, 3276509, 1278818, 7453378, 499393, 5741, 610, 62210, 2423525, 925765, 13782649, 537169541
Offset: 0

Views

Author

William P. Orrick, Jan 04 2024

Keywords

Comments

The Markov tree is a complete, infinite binary tree. Vertices are labeled by triples. The root vertex is (1, 5, 2). The left child of (a, b, c) is (a, 3*a*b - c, b); its right child is (b, 3*b*c - a, c). The sequence is a triangle read by rows consisting of the middle element of each triple, which is always the largest element of the triple. Row r contains 2^r elements.
The tree contains contains exactly one representative of each class of permutation equivalent nonsingular solutions to Markov's equation, a^2 + b^2 + c^2 = 3 * a * b * c. Nonsingular solutions are those in which a, b, and c are three distinct numbers. The two singular triples (1, 1, 1) and (1, 2, 1) are omitted in this sequence.
A consequence of Markov's equation is that the recurrence for the tree may be reformulated as follows: the left child of (a, b, c) is (a, (a^2 + b^2) / c, b); its right child is (b, (b^2 + c^2) / a, c).
An open problem is to prove the uniqueness conjecture, which asserts that the largest element of a triple determines the other two.
Frobenius proposed assigning a rational number index in (0,1) to each vertex of the tree, and hence to each term in this sequence. This is the Farey index, obtained by assigning the triple (0/1, 1/2, 1/1) to the root vertex and using the following rules to assign triples to the rest of the tree: the vertex labeled (u/v, w/x, y/z) with w = u + u and x = v + z has left child (u/v, (u+w)/(v+x), w/x) and right child (w/x, (w+y)/(x+z), y/z). The Farey index is the center element of the triple. Each rational number in (0, 1) appears as the Farey index of exactly one vertex of the tree. The index of a(n) is A007305(n+2) / A007306(n+2).
A sequence of leftward steps in the tree produces odd-indexed Fibonacci numbers, A001519, which have Farey indices of the form 1 / n. A sequence of rightward steps in the tree produces odd-indexed Pell numbers, A001653, which have Farey indices of the form (n - 1) / n. A sequence of leftward steps followed by a single rightward step produces A350922, corresponding to Farey indices of the form 2 / (2 * n + 1). Alternating steps right, left, right, left, right, ... produces A064098, which corresponds to Farey indices of the form F(n) / F(n + 1), where F(n) is the n-th Fibonacci number.

Examples

			The initial levels of the tree are as follows. (See p. 47 of Aigner's book.)
                               (1,5,2)
             (1,13,5)                              (5,29,2)
   (1,34,13)         (13,194,5)         (5,433,29)             (29,169,2)
(1,        (34,     (13,     (194,    (5,       (433,       (29,       (169,
 89,        1325,    7561,    2897,    6466,     37666,      14701,     985,
 ,34)        13)      194)     5)       433)      29)         169)       2)
		

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784.

Crossrefs

Other presentations of the Markov numbers, Markov triples, or the Markov tree: A002559, A253809, A291694, A305313, A305314, A327345.
Subsequences in the Markov tree: A001519, A001653, A350922, A064098.
Farey tree: A007305, A007306.

Programs

  • Python
    def Mtree(x): return(x[0],(3*x[0]*x[1])-x[2],x[1]), (x[1],(3*x[1]*x[2])-x[0],x[2])
    def A368546_rowlist(maxrow):
        A,B = [[(1,5,2)]],[]
        for n in range(maxrow+1):
            A.append([])
            for j in A[n]:
                B.append(max(j))
                for k in Mtree(j):
                    A[n+1].append(k)
        return(B) # John Tyler Rascoe, Feb 09 2024
  • SageMath
    def stripUpToFirst1(w):
        x = w
        while x % 2 == 0:
            x = x // 2
        return(x // 2)
    def stripUpToFirst0(w):
        x = w
        while x % 2 == 1:
            x = x // 2
        if x == 0:
            return(None)
        else:
            return(x // 2)
    @CachedFunction
    def markovNumber(w):
        if w == None:
            return(2)
        elif w == 0:
            return(1)
        elif w == 1:
            return(5)
        elif w % 2 == 0:
            return(3*markovNumber(stripUpToFirst1(w))*markovNumber(w//2) - markovNumber(stripUpToFirst0(w//2)))
        else:
            return(3*markovNumber(stripUpToFirst0(w))*markovNumber(w//2) - markovNumber(stripUpToFirst1(w//2)))
    [markovNumber(w) for w in range(1,38)]
    

A174980 Stern's diatomic series type ([0,1], 1).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 3, 1, 2, 1, 1, 0, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 5, 4, 7, 3, 8
Offset: 0

Views

Author

Peter Luschny, Apr 03 2010

Keywords

Comments

A variant of Stern's diatomic series A002487. See the link [Luschny] and the Maple function below for the classification by types which is based on a generalization of Dijkstra's fusc function.
a(n) is also the number of superduperbinary integer partitions of n.
It appears that a(n) is equal to the multiplicative inverse of A002487(n+2) mod A002487(n+1). - Gary W. Adamson, Dec 23 2023

Examples

			The sequence splits into rows of length 2^k:
  0,
  0, 1,
  0, 2, 1, 1,
  0, 3, 2, 3, 1, 2, 1, 1,
  0, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1,
  ...
.
The first few partitions counted are:
[ 0], []
[ 1], []
[ 2], [[2]]
[ 3], []
[ 4], [[4], [2, 2]]
[ 5], [[4, 1]]
[ 6], [[4, 1, 1]]
[ 7], []
[ 8], [[8], [4, 4], [2, 2, 2, 2]]
[ 9], [[8, 1], [4, 4, 1]]
[10], [[8, 2], [8, 1, 1], [4, 4, 1, 1]]
[11], [[8, 2, 1]]
[12], [[8, 2, 2], [8, 2, 1, 1]]
[13], [[8, 2, 2, 1]]
[14], [[8, 2, 2, 1, 1]]
[15], []
[16], [[16], [8, 8], [4, 4, 4, 4], [2, 2, 2, 2, 2, 2, 2, 2]]
[17], [[16, 1], [8, 8, 1], [4, 4, 4, 4, 1]]
[18], [[16, 2], [8, 8, 2], [16, 1, 1], [8, 8, 1, 1], [4, 4, 4, 4, 1, 1]]
[19], [[16, 2, 1], [8, 8, 2, 1]]
[20], [[16, 4], [16, 2, 2], [8, 8, 2, 2], [16, 2, 1, 1], [8, 8, 2, 1, 1]]
[21], [[16, 4, 1], [16, 2, 2, 1], [8, 8, 2, 2, 1]]
[22], [[16, 4, 2], [16, 4, 1, 1], [16, 2, 2, 1, 1], [8, 8, 2, 2, 1, 1]]
[23], [[16, 4, 2, 1]]
[24], [[16, 4, 4], [16, 4, 2, 2], [16, 4, 2, 1, 1]]
		

Crossrefs

Programs

  • Maple
    SternDijkstra := proc(L, p, n) local k, i, len, M; len := nops(L); M := L; k := n; while k > 0 do M[1+(k mod len)] := add(M[i], i=1..len); k := iquo(k, len); od; op(p, M) end:
    a := n -> SternDijkstra([0,1], 1, n);
  • Mathematica
    a[0] = 0; a[n_?OddQ] := a[n] = a[(n-1)/2]; a[n_?EvenQ] := a[n] = a[n/2 - 1] + a[n/2] + Boole[ IntegerQ[ Log[2, n/2]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 26 2013 *)
  • Python
    # Generating the partitions.
    def SDBinaryPartition(n):
        def Double(W, T):
            B = []
            for L in W:
                A = [a*2 for a in L]
                if T > 0: A += [1]*T
                B.append(A)
            return B
        if n == 2: return [[2]]
        if n <  4: return []
        h = n // 2
        H = SDBinaryPartition(h)
        B = Double(H, n % 2)
        if n % 2 == 0:
            H = SDBinaryPartition(h - 1)
            if H != []: B += Double(H, 2)
            if (n & (n - 1)) == 0: B.append([2]*h)
        return B
    for n in range(25): print([n], SDBinaryPartition(n)) # Peter Luschny, Sep 02 2019
  • SageMath
    def A174980(n):
        M = [0, 1]
        for b in n.bits():
            M[b] = M[0] + M[1]
        return M[0]
    print([A174980(n) for n in (0..100)]) # Peter Luschny, Nov 28 2017
    

Formula

Recursion: a(2n + 1) = a(n) and a(2n) = a(n - 1) + a(n) + [n = 2^k] for n = 1, a(0) = 0. [n = 2^k] is 1 if n is a power of 2, 0 otherwise.

A284265 Odd bisection of A284264.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 2, 3, 2, 2, 2, 3, 0, 1, 3, 4, 4, 5, 5, 5, 3, 3, 4, 5, 4, 3, 3, 4, 0, 1, 4, 5, 5, 6, 8, 7, 5, 6, 8, 10, 7, 7, 8, 7, 4, 4, 6, 8, 7, 8, 9, 8, 5, 5, 6, 7, 6, 4, 4, 5, 0, 1, 5, 6, 6, 8, 10, 9, 6, 8, 12, 13, 10, 11, 12, 10, 6, 7, 11, 14, 11, 13, 15, 15, 9, 10, 13, 14, 10, 10, 11, 9, 5, 5, 8, 11, 9, 12, 14, 13, 10, 11, 14, 16, 12, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Mar 25 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A284264((2*n)+1).
a(n) = A001222(A283484(n)).
Other identities. For all n >= 0:
A007306(1+n) = A284266(n) + 2*a(n)

A284267 Number of terms with coefficient 1 in the Stern polynomial B(2n+1,x): a(n) = A056169(A277324(n)).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 3, 1, 1, 2, 2, 2, 1, 5, 4, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 6, 5, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 7, 6, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2
Offset: 0

Views

Author

Antti Karttunen, Mar 25 2017

Keywords

Comments

Number of 1's on row 2n+1 of table A125184.

Crossrefs

Odd bisection of A284271.

Programs

Formula

a(n) = A284271((2*n)+1).
a(n) = A056169(A277324(n)).
Other identities. For all n >= 0:
A007306(1+n) = a(n) + A284268(n).
Previous Showing 41-50 of 94 results. Next