cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 240 results. Next

A102280 Let k = n-th number == 1 or 5 mod 6 (A007310(n)); consider the generalized 3x+1 map T_k defined by T_k(n) = (3n+k)/2 if n odd, n/2 if n even; then a(n) = smallest positive number m which is in a primitive cycle of T_k.

Original entry on oeis.org

1, 1, 5, 1, 1, 1, 5, 5, 7, 1, 13, 13, 19, 1, 1, 5, 25, 103, 1, 1, 1, 19, 17, 29, 5, 1, 1, 65, 7, 17, 1, 1, 1, 7, 5, 1, 19, 1, 13, 1, 5, 1, 1, 13, 11, 1, 11, 7, 1, 19, 41, 1, 13, 11, 11, 13, 11, 7, 29, 5, 11, 1, 5, 47, 1, 5, 13, 1, 43, 1, 37, 1, 17, 5, 35, 5, 7, 5, 11, 1, 7, 43, 1, 91, 1, 1, 29, 7, 47, 55, 17, 1, 13
Offset: 1

Views

Author

N. J. A. Sloane, Feb 19 2005

Keywords

Crossrefs

Extensions

a(12)[k=35] and a(25)[k=73] corrected and more terms added by Geoffrey H. Morley, Mar 14 2013

A181709 Indices of primes in A007310.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 30, 33, 34, 35, 36, 37, 38, 43, 44, 46, 47, 50, 51, 53, 55, 56, 58, 60, 61, 64, 65, 66, 67, 71, 75, 76, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93, 94, 95, 98, 103, 104, 105, 106, 111, 113, 116, 117, 118
Offset: 1

Views

Author

Grant Garcia, Nov 07 2010

Keywords

Comments

All primes but 2 and 3 are present in A007310, making this sequence an efficient method for storing large quantities of primes. To unpack this sequence into primes, use the formula (6n + (-1)^n - 3) / 2.
Indices 1 and 9 (1 and 25) are the smallest nonprimes.

Examples

			A007310(2), 5, is the first prime of the sequence.
A007310(50), 149, is also a prime, hence 50 is included.
		

Crossrefs

Programs

  • Mathematica
    Floor[Prime[Range[3,80]]/3]+1 (* Harvey P. Dale, Sep 12 2019 *)
  • Python
    from sympy import isprime
    out = ""
    for n,p in enumerate(isprime((6*n+(-1)**n-3)//2) for n in range(1,1000)):
        out+=["","%s "%str(n+1)][p]
    for n,p in enumerate(out.rstrip(" ").split(" ")): print(n+1,p)

Formula

a(n) = floor(prime(n+2)/3)+1 = A144769(n+2)+1. - Gary Detlefs, Dec 11 2011
a(n) ~ n*log(n)/3. - Ilya Gutkovskiy, Jul 18 2016

A277907 a(n) = A007310(A277908(n)).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 41, 43, 59, 61, 67, 71, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 269, 271, 277, 281, 307, 311, 313, 317, 347, 349, 379, 383, 419, 421, 431, 433, 439, 443, 461, 463, 487, 491, 499, 503, 599, 601, 617, 619, 643, 647, 739, 743, 823, 827, 853, 857, 859, 863, 877, 881
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2016

Keywords

Comments

It seems that all terms are primes, and moreover, that all those primes occur in pairs with distance of 2 or 4. However, not all terms of A001359 are present.

Crossrefs

Programs

Formula

a(n) = A007310(A277908(n)).

A365210 The number of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 3, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 3, 6, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 6, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A034444 at n = 25.
The sum of these divisors is A365211(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3 , 2, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 2, f[i,2]+1));}

Formula

Multiplicative with a(p^e) = 2 for p = 2 and 3, and a(p^e) = e+1 for a prime p >= 5.
a(n) <= A000005(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034444(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) = A000005(A065330(n)) * A034444(A065331(n)).
Dirichlet g.f.: (1-1/4^s) * (1-1/9^s) * zeta(s)^2.
Sum_{k=1..n} a(k) ~ (2*n/3) * (log(n) + 2*gamma - 1 + 2*log(2)/3 + log(3)/4), where gamma is Euler's constant (A001620).

A385044 The number of unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The sum of these divisors is A385045(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A035218.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), A385042 (exponentially 2^n), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 3, 1, 2), factor(n)[, 1]));

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and 2 if p >= 5.
a(n) = A034444(n)/A382488(n).
a(n) <= A034444(n), with equality if and only if n is 5-rough.
a(n) <= A035218(n).
Dirichlet g.f.: (zeta(s)^2/zeta(2*s)) * (1/((1+1/2^s)*(1+1/3^s))).
Sum_{k=1..n} a(k) ~ (n / (2 * zeta(2))) *(log(n) + 2*gamma - 1 + log(2)/3 + log(3)/4 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A158214 Smallest palindromic prime made up of 0's and k 1's, where k = A007310(n), odd numbers not divisible by 3.

Original entry on oeis.org

100111001, 110111011, 1110111110111, 10111101110111101, 100111111111111111001, 1111111111111111111, 11111111111111111111111, 10111111111101110111111111101, 1111110111111111111111110111111
Offset: 2

Views

Author

Lekraj Beedassy, Mar 13 2009

Keywords

Comments

Smallest palindromic prime with digit sum A007310(n) and using only 0's and 1's.

Crossrefs

Cf. A020449.

Programs

  • Python
    from _future_ import division
    from sympy.utilities.iterables import multiset_permutations
    from sympy import isprime
    A158214_list = []
    for i in range(2,101):
        if i % 6 == 1 or i % 6 == 5:
            i2 = i//2
            l = i2
            flag = True
            while flag:
                dlist = '0'*(l-i2) + '1'*i2
                for d in multiset_permutations(dlist):
                    s = ''.join(d)
                    n = int(s+'1'+s[::-1])
                    if isprime(n):
                        A158214_list.append(n)
                        flag = False
                        break
                else:
                    l += 1 # Chai Wah Wu, Dec 17 2015

A191833 Least number k such that k^k == k+1 (mod m), or 0 if no such k exists, where m = A007310(n).

Original entry on oeis.org

1, 7, 10, 14, 19, 11, 16, 3, 27, 43, 46, 178, 55, 36, 100, 64, 33, 79, 147, 43, 56, 258, 16, 86, 135, 52, 31, 27, 398, 335, 33, 187, 213, 151, 43, 680, 163, 61, 38, 243, 29, 327, 39, 213, 2068, 72, 37, 799, 198, 223, 141, 887, 92, 304, 132, 250, 808, 217, 327, 192, 271, 538, 398, 187, 79, 38, 31, 1713, 0, 413, 24, 1287, 976, 501, 48
Offset: 1

Views

Author

Keywords

Comments

k^k == k+1 (mod m) does not have any solutions for m = 2 or 3, so only numbers in A007310 need be considered.
In general, if there is a solution, the first is less than m * phi(m), where phi is the Euler totient function A000010, since the values loop from that point (at least for units).
a(n) = 0 if and only if A007310(n) is in A191834. - Robert Israel, Sep 12 2017

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,k;
      m:= (6*n + (-1)^n - 3)/2;
      for k from 1 to ilcm(m,numtheory:-phi(m)) do
        if igcd(k,m) = 1 and k &^ k - k - 1 mod m = 0 then return k fi;
      od:
      0
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 12 2017
  • Mathematica
    A007310[n_] := 2*n + 2*Floor[n/2] - 1; a[n_] := (For[m = A007310[n]; k = 1, k <= m^2, k++, If[PowerMod[k, k, m] == Mod[k+1, m], Return[k]]]; 0); Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Sep 13 2013 *)
  • PARI
    a(n)=local(m);m=A007310(n);for(k=1,m^2,if(Mod(k,m)^k==k+1,return(k)));0

A251394 Indices of numbers in A098550, that are neither multiples of 2 nor multiples of 3, cf. A007310.

Original entry on oeis.org

1, 9, 11, 13, 15, 22, 23, 30, 32, 34, 36, 38, 40, 43, 45, 51, 53, 61, 62, 68, 70, 72, 74, 76, 79, 87, 88, 94, 96, 98, 101, 103, 105, 114, 116, 118, 122, 124, 126, 127, 132, 134, 142, 144, 146, 148, 150, 153, 158, 160, 166, 167, 175, 177, 179, 181, 185, 187
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 05 2014

Keywords

Comments

GCD(A098550(a(n)),6) = 1.

Crossrefs

Programs

  • Haskell
    a251394 n = a251394_list !! (n-1)
    a251394_list = filter ((== 1) . gcd 6 . a098550) [1..]

A365211 The sum of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 31, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 57, 93, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A034448 at n = 25.
The number of these divisors is A365210(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3 , 1 + p^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 1 + f[i,1]^f[i,2], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1)));}

Formula

Multiplicative with a(p^e) = 1 + p^e for p = 2 and 3, and a(p^e) = (p^(e+1)-1)/(p-1) for a prime p >= 5.
a(n) <= A000203(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034448(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) = A000203(A065330(n)) * A034448(A065331(n)).
Dirichlet g.f.: (1 - 1/2^(2*s-1)) * (1 - 1/3^(2*s-1)) * zeta(s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 91*Pi^2/1296 = 0.69300463... .

A366441 The number of divisors of the 5-rough numbers (A007310).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 3, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 4, 2, 2, 3, 2, 6, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 2*Floor[3*n/2] - 1]; Array[a, 100]
  • PARI
    a(n) = numdiv((3*n)\2 << 1 - 1)
    
  • Python
    from sympy import divisor_count
    def A366441(n): return divisor_count((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A007310(n)).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1 + 2*log(6)) * n / 3, where gamma is Euler's constant (A001620).
Previous Showing 11-20 of 240 results. Next