cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A060660 Numbers k such that sigma(x) = k has exactly 4 solutions.

Original entry on oeis.org

96, 120, 180, 312, 372, 420, 434, 456, 540, 546, 560, 624, 702, 728, 798, 816, 930, 1064, 1120, 1170, 1404, 1632, 1638, 1674, 1710, 1776, 1792, 1944, 2100, 2240, 2544, 2560, 2664, 2760, 2800, 2844, 2856, 2940, 2952, 3000, 3040, 3048, 3060, 3080, 3096
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			96 = sigma(42) = sigma(62) = sigma(69) = sigma(77).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), this sequence (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 5001, a[ [ s ] ]++ ], {n, 1, 5000} ]; Select[ Range[ 5000 ], a[ [ # ] ] == 4 & ]
  • PARI
    is(k) = invsigmaNum(k) == 4 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060661 Numbers k such that sigma(x) = k has exactly 5 solutions.

Original entry on oeis.org

72, 144, 192, 216, 588, 600, 648, 792, 936, 992, 1056, 1224, 1302, 1320, 1560, 1736, 1980, 2040, 2088, 2112, 2268, 2448, 2730, 2790, 2912, 3038, 3136, 3312, 3472, 3520, 3534, 3552, 3672, 3792, 3816, 3936, 4056, 4092, 4340, 4440, 4864, 4872, 4920, 4960
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			72 = sigma(30) = sigma(46) = sigma(51) = sigma(55) = sigma(71).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), this sequence (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 5001, a[ [ s ] ]++ ], {n, 1, 5000} ]; Select[ Range[ 5000 ], a[ [ # ] ] == 5 & ]
    With[{upto=5000},Select[Union[Transpose[Select[Tally[DivisorSigma[ 1, Range[ upto]]],#[[2]]==5&]][[1]]],#<=upto&]] (* Harvey P. Dale, Jan 27 2015 *)
  • PARI
    is(k) = invsigmaNum(k) == 5 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060662 Numbers k such that sigma(x) = k has exactly 6 solutions.

Original entry on oeis.org

168, 252, 288, 384, 768, 1248, 1584, 1860, 2052, 2480, 2904, 3906, 3968, 4116, 4176, 4224, 4256, 4284, 4392, 4416, 4620, 5824, 5850, 5856, 5928, 6084, 6192, 6216, 6600, 6636, 6660, 6888, 6944, 7104, 7182, 7308, 7840, 7992, 8184, 8976, 9114, 9480, 9856
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			168 = sigma(60) = sigma(78) = sigma(92) = sigma(123) = sigma(143) = sigma(167).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), this sequence (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 10^4: # for terms <= N
    V:= Vector(N):
    for n from 1 to N-1 do
     s:= numtheory:-sigma(n);
     if s <= N then V[s]:= V[s]+1 fi
    od:
    select(t -> V[t]=6, [$1..N]); # Robert Israel, Nov 21 2019
  • Mathematica
    a = Table[ 0, {10000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 10001, a[ [ s ] ]++ ], {n, 1, 10000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 6 & ]
  • PARI
    is(k) = invsigmaNum(k) == 6 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060663 Numbers k such that sigma(x) = k has exactly 7 solutions.

Original entry on oeis.org

240, 684, 744, 912, 1092, 1176, 1200, 1368, 1596, 2340, 2376, 2496, 2700, 3072, 3348, 4212, 5460, 5520, 5586, 5642, 5712, 6000, 6160, 6264, 6804, 6864, 7068, 7254, 7584, 7632, 7728, 8112, 8232, 8370, 8512, 8680, 8712, 8832, 8960, 9744, 9936
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			240 = sigma(114) = sigma(135) = sigma(158) = sigma(177) = sigma(203) = sigma(209) = sigma(239).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), this sequence (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {10000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 10001, a[ [ s ] ]++ ], {n, 1, 10000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 7 & ]
    With[{upto=10000},Select[Tally[DivisorSigma[1,Range[upto]]],#[[2]]==7 && #[[1]] <= upto&]][[All,1]]//Sort (* Harvey P. Dale, Jun 22 2019 *)
  • PARI
    is(k) = invsigmaNum(k) == 7 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060664 Numbers k such that sigma(x) = k has exactly 8 solutions.

Original entry on oeis.org

336, 432, 672, 756, 840, 1536, 1620, 1764, 1848, 2280, 2394, 2604, 2808, 3264, 4080, 4480, 4860, 5328, 6528, 6624, 7128, 8316, 8568, 8880, 10608, 11040, 11448, 12288, 12420, 12636, 13176, 13200, 13248, 13536, 13860, 14196, 14208, 14448, 14700
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			336 = sigma(132) = sigma(140) = sigma(182) = sigma(188) = sigma(195) = sigma(249) = sigma(287) = sigma(299).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), this sequence (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 30000: # to get terms <= N
    V:= Vector(N):
    for k from 1 to N-1 do
      t:= numtheory:-sigma(k);
      if t <= N then V[t]:= V[t]+1 fi
    od:
    select(t -> V[t]=8, [$1..N]); # Robert Israel, Sep 22 2019
  • Mathematica
    a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 8 & ]
  • PARI
    is(k) = invsigmaNum(k) == 8 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060665 Numbers k such that sigma(x) = k has exactly 9 solutions.

Original entry on oeis.org

360, 480, 1488, 1800, 1824, 2184, 2232, 2640, 3120, 3420, 3696, 3744, 3960, 4200, 5292, 5580, 5808, 6144, 7344, 7980, 8100, 8352, 8448, 8784, 9144, 10164, 10296, 11592, 11664, 11970, 12432, 13968, 14520, 14560, 15504, 15600, 15912, 16224
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Comments

Do we have a(n) ~ c*n where c ~= 700? - David A. Corneth, Sep 23 2019

Examples

			360 = sigma(120) = sigma(174) = sigma(184) = sigma(190) = sigma(267) = sigma(295) = sigma(319) = sigma(323) = sigma(359).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), this sequence (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 60000: # to get terms <= N
    V:= Vector(N):
    for k from 1 to N-1 do
      t:= numtheory:-sigma(k);
      if t <= N then V[t]:= V[t]+1 fi
    od:
    select(t -> V[t]=9, [$1..N]); # Robert Israel, Sep 22 2019
  • Mathematica
    a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 9 & ]
  • PARI
    upto(n) = {my(v = vecsort(vector(n, i, sigma(i))), res = List()); for(i = 2, #v - 9, if(v[i-1] <= n && v[i-1] != v[i] && v[i] == v[i + 8] && v[i] != v[i+9], listput(res, v[i]))); res} \\ David A. Corneth, Sep 23 2019
    
  • PARI
    is(k) = invsigmaNum(k) == 9 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060666 Numbers k such that sigma(x) = k has exactly 10 solutions.

Original entry on oeis.org

504, 864, 960, 1152, 1260, 2400, 3276, 3888, 4992, 6696, 7020, 7644, 8892, 9672, 9984, 11172, 11200, 11376, 11616, 11856, 12936, 13728, 13888, 14136, 14280, 15480, 15876, 15984, 17808, 19488, 21336, 22608, 23688, 24738, 24840, 25080
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			504 = sigma(204) = sigma(220) = sigma(224) = sigma(246) = sigma(284) = sigma(286) = sigma(334) = sigma(415) = sigma(451) = sigma(504).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), this sequence (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {30000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 30001, a[ [ s ] ]++ ], {n, 1, 30000} ]; Select[ Range[ 30000 ], a[ [ # ] ] == 10 & ]
  • PARI
    is(k) = invsigmaNum(k) == 10 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060676 Numbers k such that sigma (x) = k has exactly 12 solutions.

Original entry on oeis.org

1512, 1872, 2352, 3192, 3780, 4104, 4560, 4752, 5880, 6120, 8160, 8424, 8820, 11424, 13056, 15264, 16464, 16704, 17160, 17360, 17760, 18648, 19680, 19800, 20880, 22752, 23616, 24552, 24864, 27432, 30336, 30492, 31200, 32448, 35328
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			1512 = sigma(480) = sigma(636) = sigma(736) = sigma(748) = sigma(830) = sigma(902) = sigma(1006) = sigma(1105) = sigma(1255) = sigma(1391) = sigma(1411) = sigma(1511).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), this sequence (12).

Programs

  • Mathematica
    a = Table[ 0, {50000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 50001, a[ [ s ] ]++ ], {n, 1, 50000} ]; Select[ Range[ 50000 ], a[ [ # ] ] == 12 & ]
    Take[Sort[Transpose[Select[Tally[DivisorSigma[1,Range[100000]]],#[[2]] == 12&]][[1]]],50] (* Harvey P. Dale, Jan 18 2013 *)
  • PARI
    is(k) = invsigmaNum(k) == 12 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060678 Numbers k such that sigma (x) = k has exactly 11 solutions.

Original entry on oeis.org

576, 1296, 2976, 3168, 3648, 3720, 4788, 4896, 5544, 6300, 9000, 9840, 10656, 11808, 12528, 13020, 13320, 14760, 15456, 16740, 17920, 18288, 18576, 19344, 19840, 20400, 21280, 22800, 23296, 24300, 26712, 26928, 27552, 27936, 28392
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			576 = sigma(210) = sigma(282) = sigma(310) = sigma(322) = sigma(345) = sigma(357) = sigma(382) = sigma(385) = sigma(497) = sigma(517) = sigma(527).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), this sequence (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {30000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 30001, a[ [ s ] ]++ ], {n, 1, 30000} ]; Select[ Range[ 30000 ], a[ [ # ] ] == 11 & ]
  • PARI
    is(k) = invsigmaNum(k) == 11 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A078426 Numbers k such that there is no solution to the equation sigma(x) = 2^k, where sigma(x) denotes the sum of the divisors of x.

Original entry on oeis.org

1, 4, 6, 11, 470, 475, 477, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 532, 1077, 1082
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 29 2002

Keywords

Comments

Numbers that are not a sum of distinct Mersenne exponents (A000043). - Vladeta Jovovic, Jan 01 2003
Because there is a large gap between the 31st and 32nd Mersenne exponents, all k between 704338 and 756839 are in this sequence. - T. D. Noe, Oct 12 2006
A000203(A180162(a(n))) = 6^a(n), for n > 1. - Walter Kehowski, Aug 16 2010
Using all known Mersenne exponents, there are exactly 52935 terms in this sequence. When a new Mersenne prime (with exponent q) is found, there will be no new terms if the sum of the previous Mersenne exponents (A109472) is greater than q - 22.

Examples

			a(2)=4 because no positive integer value of x can satisfy sigma(x) = 2^4 = 16.
		

References

  • S. Kravitz, "Beware of the Fifth", Solution to Problem 2309, Journal of Recreational Mathematics, 29(1):76 Baywood NY 1998.

Crossrefs

Cf. A000203, A007369, A046528, A063883, A180221 (complement).

Programs

  • Mathematica
    e={2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253, 4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,216091, 756839,859433,1257787,1398269}; u={0}; Do[u=Union[u, u+e[[k]]], {k,Length[e]}]; Complement[Range[e[[-1]]], u]

Extensions

More terms from Vladeta Jovovic, Jan 01 2003
Edited by N. J. A. Sloane, Aug 23 2010
Edited by Max Alekseyev, Jan 24 2014
Previous Showing 11-20 of 50 results. Next