cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A060665 Numbers k such that sigma(x) = k has exactly 9 solutions.

Original entry on oeis.org

360, 480, 1488, 1800, 1824, 2184, 2232, 2640, 3120, 3420, 3696, 3744, 3960, 4200, 5292, 5580, 5808, 6144, 7344, 7980, 8100, 8352, 8448, 8784, 9144, 10164, 10296, 11592, 11664, 11970, 12432, 13968, 14520, 14560, 15504, 15600, 15912, 16224
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Comments

Do we have a(n) ~ c*n where c ~= 700? - David A. Corneth, Sep 23 2019

Examples

			360 = sigma(120) = sigma(174) = sigma(184) = sigma(190) = sigma(267) = sigma(295) = sigma(319) = sigma(323) = sigma(359).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), this sequence (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 60000: # to get terms <= N
    V:= Vector(N):
    for k from 1 to N-1 do
      t:= numtheory:-sigma(k);
      if t <= N then V[t]:= V[t]+1 fi
    od:
    select(t -> V[t]=9, [$1..N]); # Robert Israel, Sep 22 2019
  • Mathematica
    a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 9 & ]
  • PARI
    upto(n) = {my(v = vecsort(vector(n, i, sigma(i))), res = List()); for(i = 2, #v - 9, if(v[i-1] <= n && v[i-1] != v[i] && v[i] == v[i + 8] && v[i] != v[i+9], listput(res, v[i]))); res} \\ David A. Corneth, Sep 23 2019
    
  • PARI
    is(k) = invsigmaNum(k) == 9 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060666 Numbers k such that sigma(x) = k has exactly 10 solutions.

Original entry on oeis.org

504, 864, 960, 1152, 1260, 2400, 3276, 3888, 4992, 6696, 7020, 7644, 8892, 9672, 9984, 11172, 11200, 11376, 11616, 11856, 12936, 13728, 13888, 14136, 14280, 15480, 15876, 15984, 17808, 19488, 21336, 22608, 23688, 24738, 24840, 25080
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			504 = sigma(204) = sigma(220) = sigma(224) = sigma(246) = sigma(284) = sigma(286) = sigma(334) = sigma(415) = sigma(451) = sigma(504).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), this sequence (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {30000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 30001, a[ [ s ] ]++ ], {n, 1, 30000} ]; Select[ Range[ 30000 ], a[ [ # ] ] == 10 & ]
  • PARI
    is(k) = invsigmaNum(k) == 10 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060676 Numbers k such that sigma (x) = k has exactly 12 solutions.

Original entry on oeis.org

1512, 1872, 2352, 3192, 3780, 4104, 4560, 4752, 5880, 6120, 8160, 8424, 8820, 11424, 13056, 15264, 16464, 16704, 17160, 17360, 17760, 18648, 19680, 19800, 20880, 22752, 23616, 24552, 24864, 27432, 30336, 30492, 31200, 32448, 35328
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			1512 = sigma(480) = sigma(636) = sigma(736) = sigma(748) = sigma(830) = sigma(902) = sigma(1006) = sigma(1105) = sigma(1255) = sigma(1391) = sigma(1411) = sigma(1511).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), this sequence (12).

Programs

  • Mathematica
    a = Table[ 0, {50000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 50001, a[ [ s ] ]++ ], {n, 1, 50000} ]; Select[ Range[ 50000 ], a[ [ # ] ] == 12 & ]
    Take[Sort[Transpose[Select[Tally[DivisorSigma[1,Range[100000]]],#[[2]] == 12&]][[1]]],50] (* Harvey P. Dale, Jan 18 2013 *)
  • PARI
    is(k) = invsigmaNum(k) == 12 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060678 Numbers k such that sigma (x) = k has exactly 11 solutions.

Original entry on oeis.org

576, 1296, 2976, 3168, 3648, 3720, 4788, 4896, 5544, 6300, 9000, 9840, 10656, 11808, 12528, 13020, 13320, 14760, 15456, 16740, 17920, 18288, 18576, 19344, 19840, 20400, 21280, 22800, 23296, 24300, 26712, 26928, 27552, 27936, 28392
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			576 = sigma(210) = sigma(282) = sigma(310) = sigma(322) = sigma(345) = sigma(357) = sigma(382) = sigma(385) = sigma(497) = sigma(517) = sigma(527).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), this sequence (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {30000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 30001, a[ [ s ] ]++ ], {n, 1, 30000} ]; Select[ Range[ 30000 ], a[ [ # ] ] == 11 & ]
  • PARI
    is(k) = invsigmaNum(k) == 11 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A240667 a(n) is the GCD of the solutions x of sigma(x) = n; sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 1, 9, 13, 8, 0, 0, 1, 0, 19, 0, 0, 0, 1, 0, 0, 0, 12, 0, 29, 1, 1, 0, 0, 0, 22, 0, 37, 18, 27, 0, 1, 0, 43, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 49, 0, 0, 1, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 1, 0, 73, 0, 0, 0, 45, 0, 1, 0, 0
Offset: 1

Views

Author

Michel Marcus, Apr 10 2014

Keywords

Comments

From n = 1 to 5, the least integers such that a(x) = n, depending on if singletons (see A007370 and A211656) are accepted or not, are 1, 3, 4, 7, 6 or 12, 126, 124, 210, 22152.
Is it possible to find an integer n such that a(n) = 6? Answer: n = A241625(6) = 6187272.

Examples

			There are no integers such that sigma(x) = 2, so a(2) = 0.
There is a single integer, x = 2, such that sigma(x) = 3, so a(3) = 2.
There are 2 integers, x = 6 and 11, such that sigma(x)=12, their gcd is 1, so a(12) = 1.
		

Crossrefs

Programs

  • Maple
    A240667 := n -> igcd(op(select(k->sigma(k)=n, [$1..n]))):
    seq(A240667(n), n=1..82); # Peter Luschny, Apr 13 2014
  • Mathematica
    a[n_] := GCD @@ Select[Range[n], DivisorSigma[1, #] == n&];
    Array[a, 100] (* Jean-François Alcover, Jul 30 2018 *)
  • PARI
    sigv(n) =  select(i->sigma(i) == n, vector(n, i, i));
    a(n) = {v = sigv(n); if (#v == 0, 0, gcd(v));}
    
  • PARI
    a(n) = my(s = invsigma(n)); if(#s, gcd(s), 0); \\ Amiram Eldar, Dec 19 2024, using Max Alekseyev's invphi.gp

Formula

a(A007369(n)) = 0.

A211657 Sigma(k) of numbers k such that value of sigma(k) is unique; sigma(k) = A000203(k) = sum of divisors of k.

Original entry on oeis.org

1, 3, 4, 7, 6, 8, 15, 13, 28, 14, 39, 20, 36, 40, 30, 63, 91, 38, 44, 78, 57, 93, 62, 127, 68, 195, 74, 121, 112, 171, 217, 102, 162, 110, 133, 255, 176, 160, 204, 138, 222, 266, 150, 300, 158, 363, 164, 183, 260, 174, 508, 194, 198, 200, 465, 306, 212, 256, 330
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Examples

			For n = 4, a(n) = 7 because A211656(4) = 4; sigma (4) = 7.
		

Crossrefs

Cf. A007370 (sorted version of this sequence).

Formula

a(n) = sigma(A211656(n)).

A258913 a(n) is the sum of all numbers k for which sigma(k) = n.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 17, 9, 13, 8, 0, 0, 27, 0, 19, 0, 0, 0, 52, 0, 0, 0, 12, 0, 29, 41, 52, 0, 0, 0, 22, 0, 37, 18, 27, 0, 87, 0, 43, 0, 0, 0, 115, 0, 0, 0, 0, 0, 87, 0, 67, 49, 0, 0, 121, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 253, 0, 73, 0, 0, 0
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 14 2015

Keywords

Comments

Here sigma is A000203, the sum-of-divisors function.
a(n) is the sum of the n-th row in A085790.
We can divide the set of natural numbers into three classes based on whether a(n)n. The last class is A258914. Are there any n in the second category, i.e., n such that a(n)=n, other than n=1 (see link)?
It is natural to further divide the class a(n)A007369 (not in image of sigma), which is all n for which A054973(n)=0. The second one of these, the case 01) all of A007370 (just one pre-image of n under sigma, equivalently A054973(n)=1), but also includes some terms that have more than one pre-image, see A258931.
If there exists a number n>1 such that a(n)=n, then n > 2.5*10^10. - Giovanni Resta, Jun 15 2015
Row sums of A299762. - Omar E. Pol, Mar 14 2018

Examples

			To find a(24), note that the only values of k with sigma(k)=24 are k=14,15,23; therefore a(24)=14+15+23=52.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k*Boole[DivisorSigma[1, k] == n], {k, 1, n}]; Array[a, 80] (* Jean-François Alcover, Jun 15 2015 *)
  • PARI
    a(n)=sum(k=1,n,if(sigma(k)==n,k))
    
  • PARI
    first(n)=my(v=vector(n),s); for(k=1,n,s=sigma(k);if(s<=n,v[s]+=k));v \\ Charles R Greathouse IV, Jun 15 2015
    
  • PARI
    a(n) = vecsum(invsigma(n)); \\ Amiram Eldar, Dec 16 2024, using Max Alekseyev's invphi.gp

A258931 Numbers k such that card({x|sigma(x)=k}) > 1 and (Sum_{sigma(x)=k} x) < k.

Original entry on oeis.org

124, 378, 403, 1904, 3751, 4064, 5187, 5456, 6188, 9296, 9800, 11532, 12369, 13664, 14378, 15210, 16256, 16352, 17654, 18018, 18536, 19110, 19304, 19376, 20336, 21450, 22971, 23240, 23478, 24056, 24584, 24986, 25298, 26754, 28616, 28938, 31640, 33883, 34398
Offset: 1

Views

Author

Michel Marcus, Jun 15 2015

Keywords

Comments

By definition these terms do not belong to A007370 nor to A007369.
All terms so far appear to be in A007371, with 2 pre-images. Are there any terms with more?
Yes, I find six up to 10^8 with 3 pre-images: 10714158, 12093224, 17315298, 30507906, 54891018, 81629262. - Charles R Greathouse IV, Jun 15 2015

Examples

			For k=124, the x's such that sigma(x)=124 are 48 and 75, and 48 + 75 = 123 < 124.
		

Crossrefs

Subsequence of A159886.
Cf. A000203 (sigma, the sum of divisors), A085790.
Cf. A007369 (sigma(x)=n has no solution), A007370 (exactly 1 solution),
Cf. A007371 (exactly 2 solutions), A007372 (exactly has 3 solutions).
Cf. A258913 (Sum_{sigma(x)=n} x).

Programs

  • PARI
    isok(n) = my(v = select(x->sigma(x)==n, vector(n, i, i))); (#v > 1) && (vecsum(v) < n);
    
  • PARI
    list(lim)=my(v=vector(lim\1), u=List(), s); for(k=1,#v,s=sigma(k); if(s>#v,next); v[s]=if(v[s]==0, -k, abs(v[s])+k)); for(i=1,#v, if(v[i]>0 && v[i]Charles R Greathouse IV, Jun 15 2015

A185147 Number of times each value of the sigma function occurs.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 3, 2, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 3, 1, 1, 4, 2, 1, 2, 2, 1, 1, 2, 4, 1, 2, 2, 1, 2, 2, 1, 1, 2, 5, 1, 2, 2, 1, 1, 1, 1, 6, 1, 1, 1, 4, 2, 1, 2, 5, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 3, 3, 1, 3, 7, 1, 3, 6, 1, 1, 1, 1, 2, 1, 3, 2
Offset: 1

Views

Author

T. D. Noe, Mar 18 2011

Keywords

Comments

The possible values of the sigma (sum of divisors) function are in A002191. Value A002191(n) occurs exactly a(n) times. Because sigma(x) >= x+1 (for x>1) with equality only at prime x, we know that for prime p, sigma(p) is the last time p+1 occurs as a value of sigma. This sequence is the same as A054973 without the zero terms.

Crossrefs

Cf. A007370 (numbers for which a(n)=1).

Programs

  • Mathematica
    Transpose[Sort[Tally[DivisorSigma[1, Range[Prime[PrimePi[200]]]]]]][[2]]

A332739 Numbers k such that usigma(x) = k has a unique solution, where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 14, 17, 26, 28, 33, 38, 40, 44, 56, 62, 65, 70, 74, 78, 82, 98, 100, 110, 112, 122, 129, 130, 136, 138, 158, 164, 174, 176, 182, 186, 190, 194, 208, 210, 212, 220, 222, 230, 238, 242, 244, 246, 248, 250, 256, 257, 258, 278, 282, 284, 290
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); m = 300; v = Table[ 0, {m}]; Do[u = usigma[k]; If[u <= m, v[[u]]++], {k, 1, m}]; Position[v, _?(# == 1 &)]//Flatten
Previous Showing 11-20 of 20 results.