cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A143013 Number of Motzkin n-paths with two kinds of level steps one of which is a final step.

Original entry on oeis.org

1, 2, 3, 7, 17, 43, 114, 310, 861, 2433, 6970, 20198, 59101, 174373, 518179, 1549545, 4659399, 14079553, 42732230, 130208246, 398174723, 1221573603, 3758835953, 11597578995, 35872937745, 111216324015, 345539568900, 1075693015920
Offset: 0

Views

Author

Michael Somos, Jul 15 2008

Keywords

Comments

Hankel transform is the (4,-5) Somos-4 variant A171422. - Paul Barry, Dec 08 2009

Examples

			A = 1 + (L + F) + (LL + LF + UD) + (LLL + LLF + LUD + UDL + UDF + ULD + UFD) + ...
G.f. = 1 + 2*x + 3*x^2 + 7*x^3 + 17*x^4 + 43*x^5 + 114*x^6 + 310*x^7 + 861*x^8 + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x -Sqrt(1-2*x-3*x^2-4*x^3))/(2*x^2) )); // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[(1-x -Sqrt[1-2*x-3*x^2-4*x^3])/(2*x^2), {x, 0, 30}], x] (* G. C. Greubel, Feb 26 2019 *)
  • Maxima
    a(n):=sum(sum((binomial(i-1,k-1)*binomial(k,n-k-i+2)*binomial(k+i-2,i-1))/k,k,1,n-i+2),i,0,n+2); /* Vladimir Kruchinin, May 06 2018 */
    
  • PARI
    {a(n) = if(n<0, 0, polcoeff( (1 - x - sqrt(1 - 2*x - 3*x^2 - 4*x^3 + x^3*O(x^n))) / (2*x^2), n))}
    
  • PARI
    x='x+O('x^30); Vec((1-x-(1-2*x-3*x^2-4*x^3)^(1/2))/(2*x^2)) \\ Altug Alkan, May 06 2018
    
  • Sage
    ((1-x -sqrt(1-2*x-3*x^2-4*x^3))/(2*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019

Formula

Words on alphabet {U,D,L,F} of length n where U is upstep, D is downstep, L and F are level steps and F can only be immediately followed by D or end of word with defining equation A = 1 + F + LA + UADA.
When convolved with itself yields first difference shifted left one place.
G.f. A(x) satisfies: A(x) = 1 + x + A(x)*x + (A(x)*x)^2.
G.f.: (1+x) / (1-x -(x^2 + x^3) / (1-x -(x^2 + x^3) / (1-x -...))).
G.f.: (1 - x - sqrt(1 - 2*x - 3*x^2 - 4*x^3)) / (2*x^2).
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([0,1,2]). - Gary W. Adamson, Oct 27 2008
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +3*(1-n)*a(n-2) +2*(5-2*n)*a(n-3)=0. - R. J. Mathar, Oct 25 2012
a(n) = Sum_{i=0..n+2} Sum_{k=1..n-i+2} C(i-1,k-1)*C(k,n-k-i+2)*C(k+i-2,i-1)/k. - Vladimir Kruchinin, May 06 2018

A354734 a(0) = a(1) = 1; a(n) = 3 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 3, 6, 21, 54, 189, 558, 1944, 6210, 21681, 72576, 254988, 878850, 3112101, 10935000, 39030660, 139001346, 499808232, 1797731496, 6506661798, 23583173328, 85847830965, 313063862436, 1145325387114, 4197826175634, 15424343762184, 56774049331356, 209400739623054
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 3 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]
    nmax = 28; CoefficientList[Series[(1 - Sqrt[1 - 12 x^2 (1 + x)])/(6 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 3 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 12 * x^2 * (1 + x))) / (6 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(1/8)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A354735 a(0) = a(1) = 1; a(n) = 4 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 4, 8, 36, 96, 416, 1312, 5504, 19200, 79168, 293888, 1203712, 4648448, 19027968, 75411456, 309487616, 1248411648, 5144133632, 21011775488, 86971449344, 358540509184, 1490753372160, 6189315784704, 25843660619776, 107902536122368, 452308820819968, 1897178275512320
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 4 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(1 - Sqrt[1 - 16 x^2 (1 + x)])/(8 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 4 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 16 * x^2 * (1 + x))) / (8 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(-5/32)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A354736 a(0) = a(1) = 1; a(n) = 5 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 5, 10, 55, 150, 775, 2550, 12500, 46250, 219375, 875000, 4075000, 17071250, 78796875, 341100000, 1569350000, 6947531250, 31966000000, 143761750000, 662668906250, 3014440000000, 13932834296875, 63921914062500, 296358191406250, 1368603488281250, 6365085546875000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 5 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 26}]
    nmax = 26; CoefficientList[Series[(1 - Sqrt[1 - 20 x^2 (1 + x)])/(10 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 5 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 20 * x^2 * (1 + x))) / (10 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(-13/40)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A366554 G.f. A(x) satisfies A(x) = 1 + x + x^4*A(x)^2.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 1, 0, 2, 6, 6, 2, 5, 20, 30, 20, 19, 70, 140, 140, 112, 266, 630, 840, 762, 1176, 2814, 4620, 5049, 6204, 12936, 24156, 31460, 36894, 63492, 123552, 185471, 228800, 338910, 634920, 1050686, 1411410, 1944800, 3354780, 5820256, 8513804, 11644490
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k+1, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1+x) / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k+1,n-4*k) * binomial(2*k,k)/(k+1).
a(n) = A366589(n) + A366589(n-1).

A307374 G.f. A(x) satisfies: A(x) = 1 + x - x^2*A(x)^2.

Original entry on oeis.org

1, 1, -1, -2, 1, 6, 1, -18, -16, 50, 93, -112, -428, 98, 1713, 936, -6004, -8382, 17512, 47608, -33826, -221936, -36335, 892164, 862666, -3051022, -6076072, 8026380, 32247334, -8222288, -144487267, -81500652, 555489738, 801700858, -1751543424, -4898513044
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2019

Keywords

Examples

			G.f.: A(x) = 1 + x - x^2 - 2*x^3 + x^4 + 6*x^5 + x^6 - 18*x^7 - 16*x^8 + 50*x^9 + 93*x^10 - 112*x^11 - 428*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = 1 + x - x^2 A[x]^2 + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = -Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 35}]

Formula

a(0) = a(1) = 1; a(n+2) = -Sum_{k=0..n} a(k)*a(n-k).

A349014 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x) / (1 - x) + x^2 * A(x)^2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 111, 270, 663, 1656, 4174, 10636, 27308, 70651, 183902, 481436, 1266515, 3346793, 8879116, 23642034, 63156917, 169222939, 454660940, 1224650739, 3306338583, 8945780742, 24252558183, 65872671839, 179228552638, 488443704486
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1 + x + x^2 A[x]/(1 - x) + x^2 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[a[k] (1 + a[n - k - 2]), {k, 0, n - 2}]; Table[a[n], {n, 0, 30}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} a(k) * (1 + a(n-k-2)).
a(n) ~ sqrt(1/r + (2-r)*s/(1-r)^2 + 2*s^2) / (2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.3495518575342322867499973927570340375314361958565... and s = 3.323404276086477625771682790702806844309937221726... are real roots of the system of equations 1 + r + r^2*s*(1/(1-r) + s) = s, r^2*(1/(1-r) + 2*s) = 1. - Vaclav Kotesovec, Nov 06 2021

A349015 G.f. A(x) satisfies: A(x) = 1 + x * A(x) / (1 - x) - x * A(x)^2.

Original entry on oeis.org

1, 0, 1, 0, 2, -1, 5, -6, 16, -28, 62, -125, 267, -565, 1213, -2618, 5686, -12418, 27248, -60048, 132848, -294930, 656878, -1467257, 3286219, -7378239, 16603459, -37441989, 84599855, -191501531, 434224405, -986161958, 2243009870, -5108859820, 11651743902
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; A[] = 0; Do[A[x] = 1 + x A[x]/(1 - x) - x A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[a[k] (1 - a[n - k - 1]), {k, 0, n - 1}]; Table[a[n], {n, 0, 34}]

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} a(k) * (1 - a(n-k-1)).
a(n) = 1 - Sum_{k=0..n-1} (-1)^k * A007477(k).
a(n) ~ 3^(1 + n) * (1/((1 - 2/(19 - 3*sqrt(33))^(1/3) - (1/2)*(19 - 3*sqrt(33))^(1/3))^n * ((19 - 3*sqrt(33))^(1/6)*(2 + (19 - 3*sqrt(33))^(1/3))^2 * n^(3/2) * sqrt(((-1951699 + 339747*sqrt(33))*Pi) / (-70717234 + 12310290*sqrt(33) + (19 - 3*sqrt(33))^(2/3) * (-3903398 + 679494*sqrt(33)) + (19 - 3*sqrt(33))^(1/3) * (-35358617 + 6155145*sqrt(33))))))). - Vaclav Kotesovec, Nov 17 2021

A196182 Triangle T(n,k), read by rows, given by (0,1,1,0,1,1,0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,0,0,1,0,0,1,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 8, 17, 12, 4, 1, 0, 16, 46, 44, 20, 5, 1, 0, 32, 120, 150, 90, 30, 6, 1, 0, 64, 304, 482, 370, 160, 42, 7, 1, 0, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 0, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 28 2011

Keywords

Comments

Row sums are A000108 ; diagonal sums are A005043, antidiagonal sums are A007477.

Examples

			Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 4, 6, 3, 1
0, 8, 17, 12, 4, 1
0, 16, 46, 44, 20, 5, 1
		

Crossrefs

A318122 a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} gcd(a(k), a(n-k-2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 6, 8, 8, 13, 10, 16, 18, 21, 20, 28, 20, 30, 50, 36, 26, 67, 58, 48, 46, 72, 64, 76, 56, 93, 72, 96, 96, 138, 126, 112, 102, 160, 114, 160, 150, 144, 126, 128, 118, 273, 190, 252, 130, 230, 180, 260, 248, 312, 212, 208, 320, 422, 460, 296, 452, 493, 260, 436, 280
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[GCD[a[k], a[n - k - 2]], {k, 0, n - 2}]; Table[a[n], {n, 0, 65}]
Previous Showing 11-20 of 27 results. Next