A120611 Sum of previous term and preceding divisors.
1, 2, 3, 4, 7, 8, 15, 19, 20, 27, 31, 32, 47, 48, 66, 72, 90, 111, 115, 116, 123, 127, 128, 175, 183, 187, 188, 242, 245, 253, 254, 384, 610, 613, 614, 617, 618, 624, 690, 826, 836, 862, 865, 866, 869, 870, 891, 922, 925, 926, 929, 930, 982, 985, 986, 989, 990
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {1, 2}; Do[AppendTo[a, Plus @@ Intersection[a, Divisors[a[[-1]]]]], {n, 3, 57}]; a (* Ivan Neretin, May 13 2015 *)
Formula
a(1) = 1, a(2) = 2, for n>=2, a(n+1) = a(n) + sum_{1<=k
A283166 a(0) = 0; a(1) = 1; a(2*n) = sigma(a(n)), a(2*n+1) = sigma(a(n)) + sigma(a(n+1)).
0, 1, 1, 2, 1, 4, 3, 4, 1, 8, 7, 11, 4, 11, 7, 8, 1, 16, 15, 23, 8, 20, 12, 19, 7, 19, 12, 20, 8, 23, 15, 16, 1, 32, 31, 55, 24, 48, 24, 39, 15, 57, 42, 70, 28, 48, 20, 28, 8, 28, 20, 48, 28, 70, 42, 57, 15, 39, 24, 48, 24, 55, 31, 32, 1, 64, 63, 95, 32, 104, 72, 132, 60, 184, 124, 184, 60, 116, 56, 80, 24, 104, 80, 176, 96, 240, 144, 200, 56, 180, 124
Offset: 0
Keywords
Examples
a(0) = 0; a(1) = 1; a(2) = a(2*1) = sigma(a(1)) = sigma(1) = 1; a(3) = a(2*1+1) = sigma(a(1)) + sigma(a(2)) = sigma(1) + sigma(1) = 1 + 1 = 2; a(4) = a(2*2) = sigma(a(2)) = sigma(1) = 1; a(5) = a(2*2+1) = sigma(a(2)) + sigma(a(3)) = sigma(1) + sigma(2) = 1 + 3 = 4, etc.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Some Self-Similar Integer Sequences
- Ilya Gutkovskiy, Extended graphical example
- Index entries for sequences related to sigma(n)
Programs
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], DivisorSigma[1, a[n/2]], DivisorSigma[1, a[(n - 1)/2]] + DivisorSigma[1, a[(n + 1)/2]]]; Table[a[n], {n, 0, 90}]
-
PARI
a(n) = if (n<2, n, if (n%2==0, sigma(a(n/2)), sigma(a((n-1)/2))+sigma(a((n+1)/2)))); tabl(nn)={for (n=0, nn, print1(a(n), ", "); ); }; tabl(90); \\ Indranil Ghosh, Mar 03 2017
A059460 Iteration of unitary-sigma function: a(1) = 2, a(n) = usigma(a(n-1)).
2, 3, 4, 5, 6, 12, 20, 30, 72, 90, 180, 300, 520, 756, 1120, 1584, 2040, 3888, 4148, 5580, 9600, 13416, 22176, 31680, 46800, 61880, 108864, 126880, 171864, 276480, 344232, 492480, 639600, 1039584, 1663200, 2306304, 3454080, 6390144
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..6000
Programs
-
Mathematica
f[n_] := Times @@ (1 + Power@@@ FactorInteger[n]); NestList[f, 2, 30] (* Amiram Eldar, Aug 11 2019 *)
Extensions
Corrected by Jud McCranie, Oct 28 2001
A126850 a(n) = OrdinaryUnitarySigma(a(n-1)).
2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 3360, 12096, 28448, 64512, 163760, 401760, 991872, 2399040, 6858000, 13999104, 32752000, 69400800, 172186560, 517867392, 1666990080, 5662137600, 14475575296, 33946612000, 73359820800, 158022774000
Offset: 2
Keywords
Programs
-
Maple
A034448 := proc(n) local ifs,d ; if n = 1 then 1; else ifs := ifactors(n)[2] ; mul(1+ op(1,op(d,ifs))^op(2,op(d,ifs)),d=1..nops(ifs)) ; fi ; end: A006519 := proc(n) local i ; for i in ifactors(n)[2] do if op(1,i) = 2 then RETURN( op(1,i)^op(2,i) ) ; fi ; od: RETURN(1) ; end: A107749 := proc(n) local p2 ; p2 := A006519(n) ; numtheory[sigma](p2)*A034448(n/p2) ; end: A126850 := proc(n) option remember ; if n = 1 then 2; else A107749(A126850(n-1)) ; fi ; end: seq(A126850(n),n=1..40) ; # R. J. Mathar, Jun 15 2008
-
Mathematica
f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e + 1; A107749[n_] := If[n == 1, 1, Times @@ f @@@ FactorInteger[n]]; a[n_] := a[n] = If[n == 2, 2, A107749[a[n - 1]]]; Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Jul 22 2024, after Amiram Eldar in A107749 *)
Formula
a(n)= A107749(a(n-1)). - R. J. Mathar, Jun 15 2008
Extensions
Edited and extended by R. J. Mathar, Jun 15 2008
A283167 a(0) = 1; a(2*n) = 2*a(n), a(2*n+1) = sigma(a(n)).
1, 1, 2, 1, 4, 3, 2, 1, 8, 7, 6, 4, 4, 3, 2, 1, 16, 15, 14, 8, 12, 12, 8, 7, 8, 7, 6, 4, 4, 3, 2, 1, 32, 31, 30, 24, 28, 24, 16, 15, 24, 28, 24, 28, 16, 15, 14, 8, 16, 15, 14, 8, 12, 12, 8, 7, 8, 7, 6, 4, 4, 3, 2, 1, 64, 63, 62, 32, 60, 72, 48, 60, 56, 56, 48, 60, 32, 31, 30, 24, 48, 60, 56, 56, 48, 60, 56, 56, 32, 31, 30
Offset: 0
Keywords
Examples
a(0) = 1; a(1) = a(2*0+1) = sigma(a(0)) = sigma(1) = 1; a(2) = a(2*1) = 2*a(1) = 2*1 = 2; a(3) = a(2*1+1) = sigma(a(1)) = sigma(1) = 1; a(4) = a(2*2) = 2*a(2) = 2*2 = 4; a(5) = a(2*2+1) = sigma(a(2)) = sigma(2) = 1 + 2 = 3, etc.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Some Self-Similar Integer Sequences
- Ilya Gutkovskiy, Extended graphical example
- Index entries for sequences related to sigma(n)
Programs
-
Mathematica
a[0] = 1; a[n_] := If[EvenQ[n], 2 a[n/2], DivisorSigma[1, a[(n - 1)/2]]]; Table[a[n], {n, 0, 90}]
-
PARI
a(n) = if (n==0, 1, if (n%2==0, 2*a(n/2),sigma(a((n-1)/2))));tabl(nn)={for (n=0,nn,print1(a(n),", "););};tabl(90) \\ Indranil Ghosh, Mar 03 2017
A283764 a(0) = 0; a(1) = 1; a(2*n) = sigma(a(n)), a(2*n+1) = sigma(a(n)+a(n+1)).
0, 1, 1, 3, 1, 7, 4, 7, 1, 15, 8, 12, 7, 12, 8, 15, 1, 31, 24, 24, 15, 42, 28, 20, 8, 20, 28, 42, 15, 24, 24, 31, 1, 63, 32, 72, 60, 124, 60, 56, 24, 80, 96, 144, 56, 124, 42, 56, 15, 56, 42, 124, 56, 144, 96, 80, 24, 56, 60, 124, 60, 72, 32, 63, 1, 127, 104, 120, 63, 210, 195, 336, 168, 360, 224, 360, 168, 210, 120, 186, 60, 210, 186, 372, 252, 744, 403, 465, 120, 546
Offset: 0
Keywords
Comments
Links
- Michael Gilleland, Some Self-Similar Integer Sequences
- Ilya Gutkovskiy, Extended graphical example
- Index entries for sequences related to sigma(n)
Programs
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], DivisorSigma[1, a[n/2]], DivisorSigma[1, a[(n - 1)/2] + a[(n + 1)/2]]]; Table[a[n], {n, 0, 100}]
-
PARI
a(n) = if(n<2, n, if(Mod(n,2), sigma(a((n - 1)/2) + a((n + 1)/2)), sigma(a(n/2)))); for(n=0, 100, print1(a(n),", ")) \\ Indranil Ghosh, Mar 16 2017
A286011 a(1)=1, and for n>1, a(n) is the maximum number of iterations of sigma resulting in n, starting at some integer k; or 0 if n cannot be reached from any k.
1, 0, 1, 2, 0, 1, 3, 4, 0, 0, 0, 2, 1, 2, 5, 0, 0, 1, 0, 1, 0, 0, 0, 6, 0, 0, 0, 3, 0, 1, 1, 2, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 1, 0, 0, 7, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Comments
Records are found at indices given by A007497.
The above would be correct for a(1) = 0 (in a weak sense) or rather a(1) = -1 (for infinity), but as the sequence is defined, 2 & 3 do not produce a record, so the indices of records are 1, (3), 4, 7, ... = {1} U A007497 \ {2, (3)}. - M. F. Hasler, Nov 20 2019
Examples
a(4)=2 because 4=sigma(3), but also sigma(sigma(2)) with 2 iterations. a(7)=3 because 7=sigma(4), but also sigma(sigma(3)), and sigma(sigma(sigma(2))), with 3 iterations.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- M. Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems: invsigma.gp, Oct. 2005
Programs
-
Maple
N:= 100: # to get a(1)..a(N) V:= Vector(N): for n from 1 to N do s:= numtheory:-sigma(n); if s <= N then V[s]:= max(V[s],V[n]+1) fi od: convert(V,list); # Robert Israel, May 01 2017
-
PARI
a(n) = {if (n==1, return(1)); vn = vector(n-1, k, k+1); nb = 0; knb = 0; ok = 1; while(ok, nb++; vn = vector(#vn, k, sigma(vn[k])); svn = Set(vn); if (#select(x->x==n, svn), knb = nb); if (!#select(x->x<=n, svn), ok = 0);); knb;}
-
PARI
apply( A286011(n)=if(n<3,2-n, n=invsigma(n), vecmax(apply(self,n))+1), [1..99]) \\ See Alekseyev-link for invsigma(). - M. F. Hasler, Nov 20 2019
A309727 a(n) is the least integer k such that for some iteration of sigma applied to k, one gets the n-th term of A002191, the list of possible values for the function sum of divisors.
1, 2, 2, 5, 2, 2, 5, 9, 9, 2, 10, 19, 2, 5, 29, 16, 16, 22, 37, 10, 27, 19, 43, 33, 34, 5, 49, 2, 61, 16, 67, 29, 73, 45, 49, 43, 27, 22, 50, 19, 52, 101, 16, 85, 109, 22, 73, 5, 81, 33, 67, 64, 50, 86, 81, 137, 76, 66, 149, 111, 99, 157, 81, 106, 163, 2, 52, 173, 129
Offset: 1
Keywords
Comments
The set union of this sequence is 1 U A007369.
Examples
For n = 5, A002191(5) is 7, and 4 iterations of sigma applied to 2 give 7, and no integer less than 2 will give 7, so a(5)=2.
Links
- Michel Marcus, Table of n, a(n) for n = 1..2503
Crossrefs
Programs
-
PARI
list(lim) = select(n->n<=lim, Set(vector(lim\=1, n, sigma(n)))); lista(nn) = {my(vs = list(nn), v = vector(#vs)); v[1] = 1; for (n=2, #vs, for (k=2, vs[n], my(kk=k); while (sigma(kk) <= vs[n], kk=sigma(kk)); if (kk == vs[n], v[n] = k; break););); v;}
A337436 6*a(n) + 1 is the least upper prime p of a pair of twin primes p - 2, p, for which the prime gap immediately following p achieves the size 2*A007494(n).
1, 5, 23, 33, 322, 87, 325, 278, 495, 1293, 2027, 4725, 3468, 2690, 27177, 14438, 4245, 6773, 13283, 24938, 104283, 92067, 28893, 60015, 119362, 46905, 44270, 106323, 90713, 67475, 266618, 207107, 139708, 1496910, 716182, 598867, 439633, 688518, 224922, 315893
Offset: 1
Keywords
Comments
Apart from the atypical case [3, 5, 7], prime gaps nextprime(p+1)-p following a pair of twin primes p-2, p can only have the sizes 4, 6, 10, 12, 16, 18, ..., i.e., numbers k of the form 2*(k == 0 or 2 mod 3) = 2*A007494(n).
Examples
a(1) = 1: The first occurrence of 3 consecutive primes [p-2, p, p+4] is at p = 6*a(1) + 1 = 7 -> [5, 7, 11], a(2) = 5: consecutive primes [p-2, p, p+6] first occur at p = 6*a(2) * 1 = 31 -> [29, 31, 37], a(3) = 23: consecutive primes [p-2, p, p+10] first occur at p = 6*a(3) + 1 = 139 -> [137, 139, 149].
A285634 a(1) = 4, a(n) = Product_{d|a(n-1)} d.
4, 8, 64, 2097152, 3450873173395281893717377931138512726225554486085193277581262111899648
Offset: 1
Comments
Iterating the product-of-divisors function.
The next term is too large to include.
Let a(n) = Product_{d|a(n-1)} d, with a(1) = p^k, p is a prime, k >= 0 and b(n) = b(n-1)*(b(n-1) + 1)/2, with b(1) = k, then a(n) = p^b(n).
The next term has 8067 digits. - Harvey P. Dale, Apr 18 2019
Examples
a(1) = 4; a(2) = 8 because 4 has 3 divisors {1, 2, 4} and 1*2*4 = 8; a(3) = 64 because 64 has 7 divisors {1, 2, 4, 8, 16, 32, 64} and 1*2*4*8*16*32*64 = 2097152, etc. ... a(6) = 2^26796; a(7) = 2^359026206; a(8) = 2^64449908476890321; a(9) = 2^2076895351339769460477611370186681, etc.
Links
- Eric Weisstein's World of Mathematics, Divisor Product
Programs
-
Mathematica
RecurrenceTable[{a[1] == 4, a[n] == Sqrt[a[n - 1]]^DivisorSigma[0, a[n - 1]]}, a, {n, 5}] NestList[Times@@Divisors[#]&,4,4] (* Harvey P. Dale, Apr 18 2019 *)
Comments