A100012
Let h(k) = a(k)*((145*a(k)^3)-(280*a(k)^2)+(179*a(k))-38)/6, then a(n) = h(a(n-1)) for n >= 1 and a(0) =2.
Original entry on oeis.org
2, 120, 4930988840, 14287387711051307292599794275187472361080
Offset: 0
A159860
The maximum length of a string of identical characters which can be reduced to one character in "n" nested substitution operations, e.g. replace(string, substring, character) such that all shorter strings will also reduce to one character.
Original entry on oeis.org
2, 4, 10, 40, 460, 53590, 718052410, 128899816953780640, 4153790702679538920955222740373360, 4313494300416744426870901874924164733839903365825579313972159982440
Offset: 1
Russell Harper (russell.harper(AT)springboardnetworks.com), Apr 24 2009
To illustrate, suppose we have a string of repeating Xs.
n = 1: replace(string, "XX", "X"), the longest string which will reduce to "X" is "XX"
n = 2: replace(replace(string, "XX", "X"), "XX", "X") will reduce up to 4 Xs to "X"
n = 3: replace(replace(replace(string, "XXX", "X"), "XX", "X"), "XX", "X") up to 10 Xs
n = 4: replace(replace(replace(replace(string, "XXXXXX", "X"), "XXX", "X"), "XX", "X"), "XX", "X") up to 40 Xs
etc.
-
a:= proc(n) option remember; a(n-1)*(a(n-1)+6)/4 end: a(1):=2:
seq(a(n), n=1..10); # Alois P. Heinz, Oct 11 2024
-
NestList[-Floor[(#+3)/2]^2+(#+3)*Floor[(#+3)/2]-2&,2,9] (* Shenghui Yang, Oct 11 2024 *)
-
// q is this sequence, p is A007501
set q = 2
output q
repeat
set p = q / 2 + 1
set q = p * (p + 1) - 2
output q
end repeat
A285634
a(1) = 4, a(n) = Product_{d|a(n-1)} d.
Original entry on oeis.org
4, 8, 64, 2097152, 3450873173395281893717377931138512726225554486085193277581262111899648
Offset: 1
a(1) = 4;
a(2) = 8 because 4 has 3 divisors {1, 2, 4} and 1*2*4 = 8;
a(3) = 64 because 64 has 7 divisors {1, 2, 4, 8, 16, 32, 64} and 1*2*4*8*16*32*64 = 2097152, etc.
...
a(6) = 2^26796;
a(7) = 2^359026206;
a(8) = 2^64449908476890321;
a(9) = 2^2076895351339769460477611370186681, etc.
-
RecurrenceTable[{a[1] == 4, a[n] == Sqrt[a[n - 1]]^DivisorSigma[0, a[n - 1]]}, a, {n, 5}]
NestList[Times@@Divisors[#]&,4,4] (* Harvey P. Dale, Apr 18 2019 *)
A296374
a(0) = 3; a(n) = a(n-1)*(a(n-1)^2 - 3*a(n-1) + 4)/2.
Original entry on oeis.org
3, 6, 66, 137346, 1295413937737986, 1086915296274625337063297033180803022465442306
Offset: 0
a(0) = 3;
a(1) = 6 and 6 is the 3rd triangular number;
a(2) = 66 and 66 is the 6th hexagonal number;
a(3) = 137346 and 137346 is the 66th 66-gonal number, etc.
-
RecurrenceTable[{a[0] == 3, a[n] == a[n - 1] (a[n - 1]^2 - 3 a[n - 1] + 4)/2}, a[n], {n, 5}]
A341463
a(n) = (-1)^(n+1) * (3^n+1)/2.
Original entry on oeis.org
-1, 2, -5, 14, -41, 122, -365, 1094, -3281, 9842, -29525, 88574, -265721, 797162, -2391485, 7174454, -21523361, 64570082, -193710245, 581130734, -1743392201, 5230176602, -15690529805, 47071589414, -141214768241, 423644304722, -1270932914165, 3812798742494, -11438396227481, 34315188682442
Offset: 0
- W. T. Tutte, Some polynomials associated with graphs, Combinatorics, Proceedings of the British Combinatorial Conference. Vol. 13. Cambridge Univ. Press London, 1973.
Comments