cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 100 results. Next

A095009 Number of 8k+1 primes (A007519) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 4, 10, 18, 31, 64, 115, 216, 398, 752, 1413, 2692, 5092, 9642, 18355, 35089, 66907, 128431, 246479, 473201, 911650, 1756523, 3390156, 6551387, 12673576, 24545135, 47583812, 92329094, 179317195, 348545465, 678019818, 1319938243, 2571401536
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A095013(n) - A095012(n) = A095007(n) - A095011(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A096637 Smallest prime p == 1 mod 8 (A007519) and p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).

Original entry on oeis.org

17, 73, 241, 1009, 2689, 8089, 33049, 53881, 87481, 483289, 515761, 1083289, 7921489, 3818929, 9257329, 22000801, 68204761, 48473881, 175244281, 1149374521, 427733329, 898716289
Offset: 0

Views

Author

Robert G. Wilson v, Jun 24 2004

Keywords

Comments

Same as smallest prime p == 1 mod 8 with the property that the Legendre symbol (p|q) = 1 for the first n odd primes q = prime(k+1), k = 1, 2, ..., n, and (p|q) = -1 for q = prime(n+2).

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; If[Mod[p, 8] == 1, a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]]], {n, 10^9}]; t

Extensions

Better name from Jonathan Sondow, Mar 07 2013

A185377 Product of exactly two distinct primes congruent to 1 mod 8 (A007519).

Original entry on oeis.org

697, 1241, 1513, 1649, 1921, 2329, 2993, 3281, 3649, 3961, 3977, 4097, 4369, 4633, 4777, 5321, 5617, 5729, 6001, 6497, 6817, 6953, 7081, 7361, 7633, 7769, 7913, 8249, 8633, 8857, 9553, 9673, 9809, 9881, 10001, 10057, 10081, 10217, 10489, 10537
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2011

Keywords

Comments

Subset of semiprimes A001358. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p. 2.

Examples

			10001 is in this sequence because 10001 = 73 * 137 = A007519(3) * A007519(7).
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime[Range[200]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n=p[[i]] p[[j]]; If[n <= p[[1]]p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}]][[2,1]]]
  • PARI
    list(lim)=my(v=List(),P=List(),t); forprime(p=2,lim\17, if(p%8==1, listput(P,p))); for(i=2,#P, my(p=P[i]); for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 03 2016

Formula

{A007519(i) * A007519(j) for i < j}.
{A000040(i) * A000040(j) for i < j, and A000040(i) in A017077 and A000040(j) in A017077}.

A186293 (A007519(n)-1)/2.

Original entry on oeis.org

8, 20, 36, 44, 48, 56, 68, 96, 116, 120, 128, 140, 156, 168, 176, 200, 204, 216, 224, 228, 260, 284, 288, 296, 300, 308, 320, 336, 380, 384, 404, 428, 440, 464, 468, 476, 488, 504, 516, 524, 548, 564, 576, 596, 600, 608
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Crossrefs

Cf. A186305.

Programs

Formula

a(n) = A186294(n)-1.
a(n) = 4*A005123(n).

A186294 (A007519(n)+1)/2.

Original entry on oeis.org

9, 21, 37, 45, 49, 57, 69, 97, 117, 121, 129, 141, 157, 169, 177, 201, 205, 217, 225, 229, 261, 285, 289, 297, 301, 309, 321, 337, 381, 385, 405, 429, 441, 465, 469, 477, 489, 505, 517, 525, 549, 565, 577, 597, 601, 609, 625, 645, 649, 661, 681
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Programs

  • PARI
    isok(n) = (n % 4 == 1) && isprime(2*n-1) \\ Michel Marcus, Jul 16 2013

Extensions

More terms from Michel Marcus, Jul 16 2013

A157115 Alternate terms of A007519, A007520, A007521, A007522.

Original entry on oeis.org

17, 3, 5, 7, 41, 11, 13, 23, 73, 19, 29, 31, 89, 43, 37, 47, 97, 59, 53, 71, 113, 67, 61, 79, 137, 83, 101, 103, 193, 107, 109, 127, 233, 131, 149, 151, 241, 139, 157, 167, 257, 163, 173, 191, 281, 179, 181, 199, 313, 211, 197, 223, 337, 227, 229, 239, 353, 251, 269
Offset: 1

Views

Author

Zak Seidov and N. J. A. Sloane, Feb 23 2009

Keywords

Comments

Or, read the following table by columns:
17,41,73,89,97,113,137,193,233,241,257,281,313,337,353,401,409,... (primes = = 1 mod 8)
3,11,19,43,59,67,83,107,131,139,163,179,211,227,251,283,307,331,... (primes == 3 mod 8)
5,13,29,37,53,61,101,109,149,157,173,181,197,229,269,277,293,317,... (primes == 5 mod 8)
7,23,31,47,71,79,103,127,151,167,191,199,223,239,263,271,311,359,... (primes == 7 mod 8)

Examples

			The first four primes congruent to (1,3,5,7) mod 8 are 17,3,5,7, hence a(1..4)=17,3,5,7;
The next four primes congruent to (1,3,5,7) mod 8 are 41,11,13,23, hence a(5..8)=41,11,13,23, etc.
		

Crossrefs

Programs

  • Mathematica
    s[i_]:=(c=0;a=2*i-1;Reap[Do[If[PrimeQ[a],c++;Sow[a]];If[c>99,Break[],a = a+8],{10^8}]][[2,1]]);Flatten[Transpose[Table[s[i],{i,4}]]]; (* Zak Seidov, Jan 16 2013 *)

A185379 Product of exactly three distinct primes congruent to 1 mod 8 (A007519).

Original entry on oeis.org

50881, 62033, 67609, 78761, 95489, 110449, 120377, 134521, 140233, 146761, 162401, 167977, 170017, 170969, 179129, 186337, 195857, 207281, 218161, 225913, 234889, 239513, 246041, 263177, 266377, 279497, 285073, 289153, 290321, 292009, 299081, 301801, 312953
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2011

Keywords

Comments

Subset of numbers that are divisible by exactly 3 primes (counted with multiplicity), also known as triprimes or 3-almost primes, A014612. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p.2.

Examples

			a(12) = 170017 = 17 * 73 * 137 = A007519(1) * A007519(3) * A007519(7).
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime[Range[100]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n = p[[i]] p[[j]] p[[k]]; If[n <= p[[1]] p[[2]] p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}, {k, j - 1}]][[2, 1]]]
  • PARI
    list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\697, if(p%8==1, listput(u,p))); for(i=1,#u-2, for(j=i+1, #u-1, if(u[i]*u[j]*u[j+1]>lim, break); for(k=j+1,#u, t=u[i]*u[j]*u[k]; if(t>lim, break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Formula

{A007519(i) * A007519(j) * A007519(k) for i < j < k}. {A000040(i) * A000040(j) * A000040(k) for i < j < k, and A000040(i) in A017077 and A000040(j) in A017077 and A000040(k) in A017077}.

A218028 a(n) is the smallest positive integer k such that k^4 + 1 == 0 mod p, where p is the n-th prime of the form p = 1 + 8*b (see A007519).

Original entry on oeis.org

2, 3, 10, 12, 33, 18, 10, 9, 12, 8, 4, 60, 5, 85, 70, 45, 31, 79, 92, 170, 43, 76, 152, 59, 59, 139, 256, 64, 62, 40, 44, 188, 177, 18, 14, 156, 227, 192, 231, 223, 79, 31, 75, 362, 7, 239, 338, 402, 6, 235, 114, 72, 342, 511, 15, 483, 310, 355, 104, 292, 232
Offset: 1

Views

Author

Michel Lagneau, Oct 22 2012

Keywords

Comments

A007519(n) : primes of form 8n+1.

Examples

			a(5) = 33 because 33^4+1 = 1185922 = 2 * 97 * 6113 with A007519(5) = 97.
		

Crossrefs

Programs

  • Maple
    V:= Vector(100): count:= 0:
    for p from 9 by 8 while count < 100 do
      if isprime(p) then
          count:= count+1; V[count]:=min(map(rhs@op,[msolve(k^4+1,p)]))
        fi
    od:
    convert(V,list); # Robert Israel, Mar 13 2018
  • Mathematica
    aa = {}; Do[p = Prime[n]; If[Mod[p, 8] == 1, k = 1; While[ ! Mod[k^4 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 300}]; aa

A064496 a(n) is the least k such that k * A007519(n) + 1 = 0 (mod 12).

Original entry on oeis.org

7, 7, 11, 7, 11, 7, 7, 11, 7, 11, 7, 7, 11, 11, 7, 7, 11, 11, 7, 11, 7, 7, 11, 7, 11, 7, 7, 11, 7, 11, 7, 7, 7, 7, 11, 7, 7, 11, 11, 7, 7, 11, 11, 7, 11, 7, 11, 7, 11, 11, 7, 7, 7, 7, 11, 7, 7, 11, 11, 7, 7, 11, 11, 11, 11, 7, 7, 11, 11, 7, 11, 11, 7, 11, 7
Offset: 1

Views

Author

Jon Perry, Oct 05 2001

Keywords

Comments

Original name: Values of n such that 4j = np+1 where p = 8x+1, x integer, p prime and j mod 3 = 0.

Examples

			For example, A007519(1)=17, 4j=17p+1 implies k is 7 and j is 30. The values that give 7 form the basis for solutions for the Erdős-Straus conjecture: 4/n=1/a+1/b+1/c for n >= 2, a,b,c>0 and integers.
		

Extensions

Entry revised by Sean A. Irvine, Jul 14 2023

A186295 A007519(n)-2.

Original entry on oeis.org

15, 39, 71, 87, 95, 111, 135, 191, 231, 239, 255, 279, 311, 335, 351, 399, 407, 431, 447, 455, 519, 567, 575, 591, 599, 615, 639, 671, 759, 767, 807, 855, 879, 927, 935, 951, 975, 1007, 1031, 1047, 1095, 1127, 1151, 1191, 1199, 1215
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Programs

  • PARI
    isok(n) = isprime(p=n+2) && (p % 8 == 1) \\ Michel Marcus, Jul 16 2013

Formula

a(n) = 2*A186294(n) - 3. - Michel Marcus, Jul 16 2013
Previous Showing 11-20 of 100 results. Next