A117643
a(n) = n*(a(n-1)-1) starting with a(0)=3.
Original entry on oeis.org
3, 2, 2, 3, 8, 35, 204, 1421, 11360, 102231, 1022300, 11245289, 134943456, 1754264915, 24559708796, 368395631925, 5894330110784, 100203611883311, 1803665013899580, 34269635264092001, 685392705281840000
Offset: 0
a(5) = 5*(a(4)-1) = 5*(8-1) = 35.
A371686
Triangle read by rows: T(n, k) = e * binomial(n, k) * Gamma(k + 1, 1).
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 1, 6, 15, 16, 1, 8, 30, 64, 65, 1, 10, 50, 160, 325, 326, 1, 12, 75, 320, 975, 1956, 1957, 1, 14, 105, 560, 2275, 6846, 13699, 13700, 1, 16, 140, 896, 4550, 18256, 54796, 109600, 109601, 1, 18, 180, 1344, 8190, 41076, 164388, 493200, 986409, 986410
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 1, 4, 5;
[3] 1, 6, 15, 16;
[4] 1, 8, 30, 64, 65;
[5] 1, 10, 50, 160, 325, 326;
[6] 1, 12, 75, 320, 975, 1956, 1957;
[7] 1, 14, 105, 560, 2275, 6846, 13699, 13700;
-
T := (n, k) -> binomial(n, k)*GAMMA(k + 1, 1)*exp(1):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9);
-
T[n_,k_]:=(n!/(n-k)!)*Sum[1/j!,{j,0,k}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 06 2024 *)
A374844
a(n) = n! * Sum_{k=1..n} k^k / k!.
Original entry on oeis.org
0, 1, 6, 45, 436, 5305, 78486, 1372945, 27760776, 637267473, 16372674730, 465411092641, 14501033559948, 491388542871577, 17991446425760094, 707765586767260785, 29770993461985724176, 1333347150740094075169, 63346656788618230928466
Offset: 0
-
a:= proc(n) a(n):= n*a(n-1) + n^n end: a(0):= 0:
seq(a(n), n=0..23); # Alois P. Heinz, Jul 22 2024
-
a(n) = n!*sum(k=1, n, k^k/k!);
Comments