cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-53 of 53 results.

A117643 a(n) = n*(a(n-1)-1) starting with a(0)=3.

Original entry on oeis.org

3, 2, 2, 3, 8, 35, 204, 1421, 11360, 102231, 1022300, 11245289, 134943456, 1754264915, 24559708796, 368395631925, 5894330110784, 100203611883311, 1803665013899580, 34269635264092001, 685392705281840000
Offset: 0

Views

Author

Henry Bottomley, Apr 10 2006

Keywords

Comments

Starting with a(0)=0 would give -A007526(n); starting with a(0)=1 would give -A038156(n). In general, for this recurrence, a(n) = ceiling(1 + n!*(a(0)-e)) for n>0; this is the first case with positive terms.

Examples

			a(5) = 5*(a(4)-1) = 5*(8-1) = 35.
		

Programs

Formula

a(n) = ceiling(1 + n!*(3-e)) for n>0.
a(n) = n! - floor(e*n!) + 1, n>0. - Gary Detlefs, Jun 06 2010

A371686 Triangle read by rows: T(n, k) = e * binomial(n, k) * Gamma(k + 1, 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 15, 16, 1, 8, 30, 64, 65, 1, 10, 50, 160, 325, 326, 1, 12, 75, 320, 975, 1956, 1957, 1, 14, 105, 560, 2275, 6846, 13699, 13700, 1, 16, 140, 896, 4550, 18256, 54796, 109600, 109601, 1, 18, 180, 1344, 8190, 41076, 164388, 493200, 986409, 986410
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1,  2;
  [2] 1,  4,   5;
  [3] 1,  6,  15,  16;
  [4] 1,  8,  30,  64,   65;
  [5] 1, 10,  50, 160,  325,  326;
  [6] 1, 12,  75, 320,  975, 1956,  1957;
  [7] 1, 14, 105, 560, 2275, 6846, 13699, 13700;
		

Crossrefs

Cf. A000522 (main diagonal), A007526 (subdiagonal), A010842 (row sums), A000142 and A133942 (alternating row sums), A367963 (central terms).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*GAMMA(k + 1, 1)*exp(1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9);
  • Mathematica
    T[n_,k_]:=(n!/(n-k)!)*Sum[1/j!,{j,0,k}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 06 2024 *)

Formula

T(n, k) = (n! / (n - k)!)*(Sum_{j = 0..k} (1 / j!)). - Detlef Meya, Apr 06 2024

A374844 a(n) = n! * Sum_{k=1..n} k^k / k!.

Original entry on oeis.org

0, 1, 6, 45, 436, 5305, 78486, 1372945, 27760776, 637267473, 16372674730, 465411092641, 14501033559948, 491388542871577, 17991446425760094, 707765586767260785, 29770993461985724176, 1333347150740094075169, 63346656788618230928466
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^n end: a(0):= 0:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 22 2024
  • PARI
    a(n) = n!*sum(k=1, n, k^k/k!);

Formula

a(0) = 0; a(n) = n*a(n-1) + n^n.
a(n) = A277506(n) - n!.
E.g.f.: -1/( (1 + 1/LambertW(-x)) * (1 - x) ).
a(n) ~ n^n / (1 - exp(-1)). - Vaclav Kotesovec, Jul 22 2024
Previous Showing 51-53 of 53 results.