cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A319381 Number of plane trees with n nodes where the sequence of branches directly under any given node is a membership-chain.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 9, 11, 20, 28, 40, 58, 82, 110, 159, 217, 305, 420, 570, 767, 1042
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The a(9) = 11 membership-chain trees:
  ((((((((o))))))))  (((((((o)o))))))  ((((((o)o)o))))  (((((o)o)o)o))
                     ((((((o))(o)))))  (((((o)o)(o))))  ((((o)o)(o)o))
                     (((((o)))((o))))  (((((o))(o)o)))  ((((o))(o)o)o)
                                       ((((o))(o))(o))
		

Crossrefs

Programs

  • Mathematica
    yanplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[yanplane/@c],And@@MemberQ@@@Partition[#,2,1]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[yanplane[n]],{n,10}]

A319378 Number of plane trees with n nodes where the sequence of branches directly under any given node with at least two branches has empty intersection.

Original entry on oeis.org

1, 1, 2, 5, 13, 39, 118, 375, 1225, 4079, 13794, 47287, 163962, 573717, 2023800
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The a(5) = 13 locally nonintersecting plane trees:
  ((((o))))  (((oo)))  ((ooo))  (oooo)
             (((o)o))  ((oo)o)
             ((o(o)))  (o(oo))
             (((o))o)  ((o)oo)
             (o((o)))  (o(o)o)
                       (oo(o))
		

Crossrefs

Programs

  • Mathematica
    monplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[monplane/@c],Or[Length[#]==1,Intersection@@#=={}]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[monplane[n]],{n,10}]

A363387 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^2 / (k*x^k) ).

Original entry on oeis.org

1, 1, 1, 3, 6, 17, 42, 120, 330, 962, 2797, 8334, 24989, 75905, 232142, 715830, 2220473, 6928411, 21723883, 68424327, 216376757, 686742855, 2186771571, 6984248840, 22368127861, 71818903891, 231132440916, 745454242656, 2409080380316, 7799945417349
Offset: 1

Views

Author

Ilya Gutkovskiy, May 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^2/(k x^k), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; g[n_] := g[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 30}]
  • PARI
    seq(n)=my(p=x+x^2+O(x^3)); for(n=1, n\2, my(m=serprec(p,x)-1); p = x + x^2*exp(sum(k=1, m, subst(p + O(x^(m\k+1)), x, x^k)^2/(x^k*k)))); Vec(p + O(x*x^n)) \\ Andrew Howroyd, May 30 2023

A319271 Number of series-reduced locally non-intersecting aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 9, 12, 27, 42, 91, 151, 312, 550, 1099, 2026, 3999, 7527, 14804, 28336, 55641, 107737, 211851, 413508, 814971, 1600512, 3162761, 6241234
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and aperiodic if the multiplicities in the multiset of branches directly under any given node are relatively prime, and locally non-intersecting if the branches directly under any given node with more than one branch have empty intersection.

Examples

			The a(8) = 9 rooted trees:
  (o(o(o(o))))
  (o(o(o)(o)))
  (o(ooo(o)))
  (oo(oo(o)))
  (o(o)(o(o)))
  (ooo(o(o)))
  (o(o)(o)(o))
  (ooo(o)(o))
  (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    btrut[n_]:=btrut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[btrut/@c]]]/@IntegerPartitions[n-1],And[Intersection@@#=={},GCD@@Length/@Split[#]==1]&]];
    Table[Length[btrut[n]],{n,30}]

A345200 G.f. A(x) satisfies: A(x) = x + x^2 * exp(2 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 2, 5, 12, 32, 84, 234, 652, 1872, 5416, 15922, 47188, 141283, 425910, 1293105, 3948080, 12118619, 37367694, 115708111, 359623780, 1121543440, 3508533500, 11006973980, 34620982004, 109157354769, 344928572562, 1092190467567, 3464955417200, 11012117992012
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = x + x^2 Exp[2 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (2/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 30}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(2*a(n)).
a(n+2) = (2/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).
a(n) ~ c * d^n / n^(3/2), where d = 3.3437762102302517833309792925121217026126033230718263962128740290952197... and c = 0.3397354606156870289877990463189432389789387070060129709272911771... - Vaclav Kotesovec, Jun 19 2021

A345234 G.f. A(x) satisfies: A(x) = x + x^2 * exp(A(x) - A(-x^2)/2 + A(x^3)/3 - A(-x^4)/4 + ...).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 17, 31, 58, 112, 218, 427, 844, 1683, 3381, 6824, 13842, 28226, 57796, 118762, 244874, 506515, 1050688, 2185095, 4555217, 9517423, 19926174, 41798031, 87833877, 184881588, 389765182, 822901122, 1739763655, 3682955618, 7806103024, 16564348106, 35187631009
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 38; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[(-1)^(k + 1) A[(-1)^(k + 1) x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[(-1)^(k + 1) Sum[(-1)^(k/d + d) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 38}]

Formula

G.f.: x + x^2 * Product_{n>=1} (1 + (-x)^n)^((-1)^n*a(n)).
a(n+2) = (1/n) * Sum_{k=1..n} (-1)^(k+1) * ( Sum_{d|k} (-1)^(k/d+d) * d * a(d) ) * a(n-k+2).
a(n) ~ c * d^n / n^(3/2), where d = 2.21094707842288180828190718521597733363607957468229824761... and c = 0.664585976397397791197984310778764361056468131968... - Vaclav Kotesovec, Jun 19 2021

A345235 G.f. A(x) satisfies: A(x) = x + x^2 * exp(A(x) + A(-x^2)/2 + A(x^3)/3 + A(-x^4)/4 + ...).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 14, 25, 44, 78, 142, 261, 479, 886, 1655, 3105, 5843, 11043, 20965, 39938, 76285, 146123, 280691, 540475, 1042885, 2016481, 3906647, 7582034, 14739395, 28697969, 55958110, 109262713, 213619535, 418158580, 819491034, 1607764395, 3157551026, 6207346544
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[(-1)^(k + 1) x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[(-1)^k Sum[(-1)^d d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 40}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - (-x)^n)^((-1)^n*a(n)).
a(n+2) = (1/n) * Sum_{k=1..n} (-1)^k * ( Sum_{d|k} (-1)^d * d * a(d) ) * a(n-k+2).
a(n) ~ c * d^n / n^(3/2), where d = 2.04187801797233390910633071122033289228232310618876458... and c = 0.624667034123125135463988884805660643637934291759335... - Vaclav Kotesovec, Jun 19 2021

A345241 G.f. A(x) satisfies: A(x) = x + x^2 * exp(3 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 3, 9, 28, 93, 315, 1109, 3969, 14505, 53726, 201588, 764001, 2921730, 11257881, 43669590, 170383933, 668236581, 2632898016, 10416893159, 41368099791, 164841324837, 658883345595, 2641064296638, 10613953319448, 42757746556377, 172628891937513, 698398635475974
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = x + x^2 Exp[3 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (3/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 28}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(3*a(n)).
a(n+2) = (3/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).

A345242 G.f. A(x) satisfies: A(x) = x + x^2 * exp(4 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 4, 14, 52, 205, 832, 3492, 14960, 65322, 289384, 1298064, 5882712, 26897352, 123919576, 574718308, 2681028168, 12571650355, 59222213028, 280139215118, 1330101884932, 6336757979653, 30282375754944, 145124083402256, 697293746743760, 3358385599930269, 16210842955175380
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = x + x^2 Exp[4 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (4/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 27}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(4*a(n)).
a(n+2) = (4/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).

A345973 G.f.: x + x^2 / Product_{n>=1} (1 - a(n)*x^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 36, 73, 138, 281, 549, 1136, 2263, 4705, 9553, 20015, 41096, 86643, 179638, 380701, 795892, 1693003, 3562217, 7612680, 16099538, 34505797, 73345831, 157678081, 336419942, 725236780, 1552662599, 3354979195, 7205601904, 15600414855, 33594465666
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 30 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1, add(a(n-k)*add(d*
          a(d)^(k/d), d=numtheory[divisors](k)), k=1..n-2)/(n-2))
        end:
    seq(a(n), n=1..37);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x + x^2/Product[(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 37}]
    a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d a[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 37}]

Formula

G.f.: x + x^2 * exp(Sum_{n>=1} Sum_{k>=1} a(n)^k * x^(n*k) / k).
a(n+2) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d)^(k/d) ) * a(n-k+2).
Previous Showing 11-20 of 31 results. Next