cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A028501 18-hyperperfect numbers: n = 18*(sigma(n)-n-1) + 1.

Original entry on oeis.org

1333, 1909, 2469601, 893748277, 322685352001, 8992165119733, 42052982615431201
Offset: 1

Views

Author

Keywords

Comments

1978419655654505210563957 are also terms. - Donovan Johnson, Nov 20 2012
a(8) > 10^17. - Max Alekseyev, Nov 17 2019

Crossrefs

Extensions

a(5) from Donovan Johnson, Nov 03 2011
a(6)-a(7) from Donovan Johnson confirmed by Max Alekseyev, Nov 21 2019

A305616 Near 2-hyperperfect numbers: numbers k such that sigma(k) - 3*k/2 - 1/2 is a proper divisor of k.

Original entry on oeis.org

15, 63, 147, 171, 207, 627, 663, 1023, 1647, 1971, 2975, 6399, 18063, 19359, 27639, 40215, 48895, 58563, 78819, 95511, 114231, 133595, 134871, 145915, 147455, 163539, 168507, 172287, 188067, 529983, 680859, 795639, 1207359, 1238571, 1553499, 1588491, 2049219
Offset: 1

Views

Author

Amiram Eldar, Jun 06 2018

Keywords

Comments

Supersequence of A063906.
A combination of the notions of 2-hyperperfect numbers (A007593) and near-perfect numbers (A181595).

Examples

			15 is in the sequence since sigma(15) = 24 and 24 - 3*15/2 - 1/2 = 1 is a proper divisor of 15.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Module[{d=DivisorSigma[1, n]-3n/2-1/2}, d>0 && d!=n && IntegerQ[d] && Divisible[n,d]]; Select[Range[1000000], aQ]
  • PARI
    isok(n) = (n % 2) && (k = sigma(n) - (3*n+1)/2) && (k>0) && !(n % k) && (k != n); \\ Michel Marcus, Jun 07 2018

A305617 Deficient 2-hyperperfect numbers: numbers k such that 3*k/2 + 1/2 - sigma(k) is a proper divisor of k.

Original entry on oeis.org

3, 9, 27, 35, 39, 55, 81, 243, 279, 387, 715, 729, 1443, 2187, 2619, 3655, 5635, 6561, 10855, 12635, 19683, 59049, 77283, 177147, 178119, 294759, 443135, 531441, 817167, 1170723, 1594323, 1605987, 1632231, 1710963, 1947159, 2410239, 2624375, 2655747, 3944255
Offset: 1

Views

Author

Amiram Eldar, Jun 06 2018

Keywords

Comments

Includes all the powers of 3 (A000244).
A combination of the notions 2-hyperperfect numbers (A007593) and deficient-perfect numbers (A271816).

Examples

			35 is in the sequence since sigma(35) = 48 and 3*35/2 + 1/2 - 48 = 5 is a proper divisor of 35.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Module[{d = 3n/2+1/2-DivisorSigma[1,n]}, d>0 && d!=n && IntegerQ[d] && Divisible[n,d]]; Select[Range[2,1000000], aQ]
  • PARI
    isok(n) = (n % 2) && (k = (3*n+1)/2 - sigma(n)) && (k > 0) && !(n % k) && (k != n); \\ Michel Marcus, Jun 07 2018, corrected by Amiram Eldar, Dec 23 2024

A062967 a(n) = 2*(sigma(n)-n-1)+1, where sigma = A000203, sum of divisors of n.

Original entry on oeis.org

-1, 1, 1, 5, 1, 11, 1, 13, 7, 15, 1, 31, 1, 19, 17, 29, 1, 41, 1, 43, 21, 27, 1, 71, 11, 31, 25, 55, 1, 83, 1, 61, 29, 39, 25, 109, 1, 43, 33, 99, 1, 107, 1, 79, 65, 51, 1, 151, 15, 85, 41, 91, 1, 131, 33, 127, 45, 63, 1, 215, 1, 67, 81, 125, 37, 155, 1, 115, 53, 147, 1, 245, 1, 79, 97, 127, 37, 179, 1, 211, 79, 87, 1, 279, 45, 91, 65
Offset: 1

Views

Author

Jason Earls, Jul 23 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Array[2 (DivisorSigma[1, #] - # - 1) + 1 &, 87] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    j=[]; for(n=1,200,j=concat(j,2*(sigma(n)-n-1)+1)); j

Formula

a(n) = 2*A001065(n) - 1. - Antti Karttunen, Oct 30 2017
Previous Showing 11-14 of 14 results.