2, 3, 5, 5, 7, 11, 7, 9, 13, 19, 11, 13, 17, 23, 31, 13, 15, 19, 25, 33, 43, 17, 19, 23, 29, 37, 47, 59, 19, 21, 25, 31, 39, 49, 61, 75, 23, 25, 29, 35, 43, 53, 65, 79, 95, 29, 31, 35, 41, 49, 59, 71, 85, 101, 119, 31, 33, 37, 43, 51, 61, 73, 87, 103, 121, 141, 37, 39, 43, 49, 57
Offset: 1
T(5,k)=A048058(k)=A048059(k), 1<=k<=5: T(5,1)=A014556(4)=11;
T(7,k)=A007635(k), 1<=k<=7: T(7,1)=A014556(5)=17;
T(13,k)=A005846(k), 1<=k<=13: T(13,1)=A014556(6)=41.
A272118
Numbers k such that abs(6*k^2 - 342*k + 4903) is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 66, 67, 68, 69, 71, 72
Offset: 1
4 is in this sequence since 6*4^2 - 342*4 + 4903 = 96-1368+4903 = 3631 is prime.
-
Select[Range[0, 100], PrimeQ[6*#^2 - 342*# + 4903] &]
-
isok(n) = isprime(abs(6*n^2 - 342*n + 4903)); \\ Michel Marcus, Apr 21 2016
A272302
Nonnegative numbers n such that abs(3n^3 - 183n^2 + 3318n - 18757) is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 62, 63, 65, 66, 69, 70, 74, 79, 80, 81, 82, 85
Offset: 1
4 is in this sequence since abs(3*4^3 - 183*4^2 + 3318*4 - 18757) = abs(192-2928+13272-18757) = 8221 is prime.
Cf.
A050268,
A050267,
A005846,
A007641,
A007635,
A048988,
A050265,
A050266,
A271980,
A272030,
A272074,
A272075,
A272160,
A271144,
A272285,
A272401.
-
Select[Range[0, 100], PrimeQ[3#^3 - 183#^2 + 3318# - 18757 ] &]
-
is(n)=isprime(abs(3*n^2-183*n^2+3318*n-18757)) \\ Charles R Greathouse IV, Feb 17 2017
A272438
Primes of the form abs(-66n^3 + 3845n^2 - 60897n + 251831) in order of increasing nonnegative n.
Original entry on oeis.org
251831, 194713, 144889, 101963, 65539, 35221, 10613, 8681, 23057, 32911, 38639, 40637, 39301, 35027, 28211, 19249, 8537, 3529, 16553, 30139, 43891, 57413, 70309, 82183, 92639, 101281, 107713, 111539, 112363, 109789, 103421, 92863, 77719, 57593, 32089, 811
Offset: 1
65539 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
A272437
Nonnegative numbers n such that abs(-66n^3 + 3845n^2 - 60897n + 251831) is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 51, 54, 58, 65, 68, 70, 75, 76, 77, 82, 88, 89, 97, 99, 101, 102, 104, 109
Offset: 1
4 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
Cf.
A050268,
A050267,
A005846,
A007641,
A007635,
A048988,
A050265,
A050266,
A271980,
A272030,
A272074,
A272075,
A272160,
A271144,
A272285,
A272401,
A272438.
-
Select[Range[0, 109], PrimeQ[-66#^3 + 3845#^2 - 60897# + 251831] &]
-
is(n)=isprime(abs(66*n^3-3845*n^2+60897*n-251831)) \\ Charles R Greathouse IV, Feb 20 2017
A272444
Primes of the form abs(n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397) in order of increasing nonnegative n.
Original entry on oeis.org
286397, 8543, 210011, 336121, 402851, 424163, 412123, 377021, 327491, 270631, 212123, 156353, 106531, 64811, 32411, 9733, 3517, 8209, 5669, 2441, 14243, 27763, 41051, 52301, 59971, 62903, 60443, 52561, 39971, 24251, 7963, 5227, 10429, 1409, 29531, 91673
Offset: 1
402851 is in this sequence since abs(4^5 - 99*4^4 + 3588*4^3 - 56822*4^2 + 348272*4 - 286397) = abs(1024-25344+229632-909152+1393088-286397) = 402851 is prime.
-
n = Range[0, 100]; Select[n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397, PrimeQ[#] &]
-
lista(nn) = for(n=0, nn, if(isprime(p=abs(n^5-99*n^4+3588*n^3-56822*n^2+348272*n-286397)), print1(p, ", "))); \\ Altug Alkan, Apr 29 2016
Comments