cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A117531 Number of primes in the n-th row of the triangle in A117530.

Original entry on oeis.org

1, 2, 3, 3, 5, 3, 7, 3, 5, 6, 6, 6, 13, 3, 11, 8, 12, 8, 13, 10, 8, 7, 12, 10, 9, 21, 6, 22, 11, 7, 13, 12, 21, 13, 14, 16, 18, 7, 20, 17, 21, 20, 24, 14, 18, 20, 16, 16, 35, 10, 18, 29, 18, 30, 30, 26, 21, 18, 21, 29, 16, 22, 32, 40, 10, 27, 24, 25, 45, 18, 39, 40, 43, 11, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2006

Keywords

Comments

1 <= a(n) <= n; conjecture: a(n) < n for n>13.

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..n} A010051(A117530(n,k)).

A005846 Primes of the form k^2 + k + 41.

Original entry on oeis.org

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601, 1847, 1933, 2111, 2203, 2297, 2393, 2591, 2693, 2797
Offset: 1

Views

Author

Keywords

Comments

Note that 41 is the largest of Euler's Lucky numbers (A014556). - Lekraj Beedassy, Apr 22 2004
a(n) = A117530(13, n) for n <= 13: a(1) = A117530(13, 1) = A014556(6) = 41, A117531(13) = 13. - Reinhard Zumkeller, Mar 26 2006
The link to E. Wegrzynowski contains the following incorrect statement: "It is possible to find a polynomial of the form n^2 + n + B that gives prime numbers for n = 0, ..., A, A being any number." It is known that the maximum is A = 39 for B = 41. - Luis Rodriguez (luiroto(AT)yahoo.com), Jun 22 2008
Contrary to the last comment, Mollin's Theorem 2.1 shows that any A is possible if the Prime k-tuples Conjecture is assumed. - T. D. Noe, Aug 31 2009
a(n) can be generated by a recurrence based on the gcd in the type of Eric Rowland and Aldrich Stevens. See the recurrence in PARI under PROG. - Mike Winkler, Oct 02 2013
These primes are not prime in O_(Q(sqrt(-163))). Given p = n^2 + n + 41, we have ((2*n + 1)/2 - sqrt(-163)/2)*((2*n + 1)/2 + sqrt(-163)/2) = p, e.g., 1601 = 39^2 + 39 + 41 = (79/2 - sqrt(-163)/2)*(79/2 + sqrt(-163)/2). - Alonso del Arte, Nov 03 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n) := n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. It follows that the polynomial P(n-40) takes prime values for the 80 consecutive integers n = 0 to 79, consisting of the 40 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n-40) = 4*n^2 - 158*n + 1601 also takes prime values for the 40 consecutive integers n = 0 to 39.
2) The polynomial P(3*n-40) = 9*n^2 - 237*n + 1601 takes prime values for the 27 consecutive integers n = 0 to 26 ( = floor(79/3)). In addition, calculation shows that P(3*n-40) also takes prime values for n from -13 to -1. Equivalently put, the polynomial P(3*n-79) = 9*n^2 - 471*n + 6203 takes prime values for the 40 consecutive integers n = 0 to 39. This result is due to Higgins. Cf. A007635 and A048059. (End)

Examples

			a(39) = 1601 = 39^2 + 39 + 41 is in the sequence because it is prime.
1681 = 40^2 + 40 + 41 is not in the sequence because 1681 = 41*41.
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 225.
  • R. K. Guy, Unsolved Problems Number Theory, Section A1.
  • O. Higgins, Another long string of primes, J. Rec. Math., 14 (1981/2) 185.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 137.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 139, 149.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.

Crossrefs

Intersection of A000040 and A202018; A010051.
Cf. A048059.

Programs

  • GAP
    Filtered(List([0..100],n->n^2+n+41),IsPrime); # Muniru A Asiru, Apr 22 2018
    
  • Haskell
    a005846 n = a005846_list !! (n-1)
    a005846_list = filter ((== 1) . a010051) a202018_list
    -- Reinhard Zumkeller, Dec 09 2011
    
  • Magma
    [a: n in [0..55] | IsPrime(a) where a is n^2+n+ 41]; // Vincenzo Librandi, Apr 24 2018
  • Maple
    for y from 0 to 10 do
    U := y^2+y+41;
    if isprime(U) = true then print(U) end if ;
    end do:
    # Matt C. Anderson, Jan 04 2013
  • Mathematica
    Select[Table[n^2 + n + 41, {n, 0, 59}],PrimeQ] (* Alonso del Arte, Dec 08 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=n^2+n+41),print1(k", "))) \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    {k=2; n=1; for(x=1, 100000, f=x^2+x+41; g=x^2+3*x+43; a=gcd(f, g-k); if(a>1, k=k+2); if(a==x+2-k/2, print(n" "a); n++))} \\ Mike Winkler, Oct 02 2013
    

Formula

a(n) = A056561(n)^2 + A056561(n) + 41.

Extensions

More terms from Henry Bottomley, Jun 26 2000

A007635 Primes of form n^2 + n + 17.

Original entry on oeis.org

17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 359, 397, 479, 523, 569, 617, 719, 773, 829, 887, 947, 1009, 1277, 1423, 1499, 1657, 1823, 1997, 2087, 2179, 2273, 2467, 2879, 3209, 3323, 3557, 3677, 3923, 4049, 4177, 4987, 5273
Offset: 1

Views

Author

Keywords

Comments

a(n) = A117530(7,n) for n <= 7: a(1) = A117530(7,1) = A014556(5) = 17, A117531(7) = 7. - Reinhard Zumkeller, Mar 26 2006
Note that the gaps between terms increases by 2*k from k = 1 to 15: 19 - 17 = 2, 23 - 19 = 4, 29 - 23 = 6 and so on until 257 - 227 = 30 then fails at 289 - 257 = 32 since 289 = 17^2. - J. M. Bergot, Mar 18 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n):= n^2 + n + 17 takes distinct prime values for the 16 consecutive integers n = 0 to 15. It follows that the polynomial P(n - 16) takes prime values for the 32 consecutive integers n = 0 to 31, consisting of the 16 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n - 16) = 4*n^2 - 62*n + 257 also takes prime values for the 16 consecutive integers n = 0 to 15.
2)The polynomial P(3*n - 16) = 9*n^2 - 93*n + 257 takes prime values for the 11 consecutive integers n = 0 to 10 ( = floor(31/3)). In addition, calculation shows that P(3*n-16) also takes prime values for n from -5 to -1. Equivalently put, the polynomial P(3*n-31) = 9*n^2 - 183*n + 947 takes prime values for the 16 consecutive integers n = 0 to 15. Cf. A005846 and A048059. (End)
The primes in this sequence are not primes in the ring of integers of Q(sqrt(-67)). If p = n^2 + n + 17, then ((2n + 1)/2 - sqrt(-67)/2)((2n + 1)/2 + sqrt(-67)/2) = p. For example, 3^2 + 3 + 17 = 29 and (7/2 - sqrt(-67)/2)(7/2 + sqrt(-67)/2) = 29 also. - Alonso del Arte, Nov 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 96.

Crossrefs

Programs

  • Magma
    [a: n in [0..250]|IsPrime(a) where a is n^2+n+17]; // Vincenzo Librandi, Dec 23 2010
    
  • Mathematica
    Select[Table[n^2 + n + 17, {n, 0, 99}], PrimeQ] (* Alonso del Arte, Nov 27 2019 *)
  • PARI
    select(isprime, vector(100,n,n^2+n+17)) \\ Charles R Greathouse IV, Jul 12 2016
    
  • Python
    from sympy import isprime
    it = (n**2 + n + 17 for n in range(250))
    print([p for p in it if isprime(p)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = A028823(n)^2 + A028823(n) + 17. - Seiichi Manyama, Mar 19 2017

A052147 a(n) = prime(n) + 2.

Original entry on oeis.org

4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk), Jan 24 2000

Keywords

Comments

A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003
A117530(n,2) = a(n) for n>1. - Reinhard Zumkeller, Mar 26 2006
a(n) = A000040(n) + 2 = A008864(n) + 1 = A113395(n) - 1 = A175221(n) - 2 = A175222(n) - 3 = A139049(n) - 4 = A175223(n) - 5 = A175224(n) - 6 = A140353(n) - 7 = A175225(n) - 8. - Jaroslav Krizek, Mar 06 2010
Left edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
Union of A006512 and A107986. - David James Sycamore, Jul 08 2018

Crossrefs

A139690 is a subsequence.

Programs

A014556 Euler's "Lucky" numbers: n such that m^2-m+n is prime for m=0..n-1.

Original entry on oeis.org

2, 3, 5, 11, 17, 41
Offset: 1

Views

Author

Keywords

Comments

Same as n such that 4n-1 is a Heegner number 1,2,3,7,11,19,43,67,163 (see A003173 and Conway and Guy's book).

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 225.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 41, p. 16, Ellipses, Paris 2008.
  • I. N. Herstein and I. Kaplansky, Matters Mathematical, Chelsea, NY, 2nd. ed., 1978, see p. 38.
  • F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, pp. 88 and 144, 1983.

Crossrefs

Programs

  • Mathematica
    A003173 = Union[Select[-NumberFieldDiscriminant[Sqrt[-#]] & /@ Range[200], NumberFieldClassNumber[Sqrt[-#]] == 1 &] /. {4 -> 1, 8 -> 2}]; a[n_] := (A003173[[n + 4]] + 1)/4; Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Jul 16 2012, after M. F. Hasler *)
    Select[Range[50],AllTrue[Table[m^2-m+#,{m,0,#-1}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 12 2017 *)
  • PARI
    is(n)=n>1 && qfbclassno(1-4*n)==1 \\ Charles R Greathouse IV, Jan 29 2013
    
  • PARI
    is(p)=for(n=1,p-1, if(!isprime(n*(n-1)+p),return(0))); 1 \\ naive; Charles R Greathouse IV, Aug 26 2022
    
  • PARI
    is(p)=for(n=1,sqrt(p/3)\/1, if(!isprime(n*(n-1)+p),return(0))); 1 \\ Charles R Greathouse IV, Aug 26 2022

Formula

a(n) = (A003173(n+3) + 1)/4. - M. F. Hasler, Nov 03 2008

A208645 Least x>0 such that x^2+x+n is not prime.

Original entry on oeis.org

2, 4, 1, 2, 1, 4, 1, 1, 1, 2, 1, 10, 1, 1, 1, 2, 1, 16, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 40, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 03 2012

Keywords

Comments

By definition, a(n)>0 for all n, and a(n)>1 if n+2 is prime.

Examples

			a(0)=2 since 1^2+1+0=2 is prime, but 2^2+2+0=6 is composite.
a(1)=4 since 1^2+1+1=2, 2^2+2+1=7 and 3^2+3+1=13 are prime, but 4^2+4+1=21 is composite.
		

Crossrefs

Programs

  • Mathematica
    lx[n_]:=Module[{x=1},While[PrimeQ[x^2+x+n],x++];x]; Array[lx, 90, 0] (* Harvey P. Dale, Aug 14 2013 *)
  • PARI
    a(n)=for( x=1, n+3, isprime(x^2+x+n) || return(x))
Showing 1-6 of 6 results.