cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 119 results. Next

A118140 Index of A005846(n) in the primes.

Original entry on oeis.org

13, 14, 15, 16, 18, 20, 23, 25, 30, 32, 36, 40, 45, 48, 54, 60, 65, 69, 76, 82, 89, 96, 101, 108, 116, 125, 132, 139, 147, 156, 164, 174, 184, 192, 202, 212, 220, 229, 241, 252, 283, 295, 318, 328, 342, 356, 377, 392, 407, 420, 432, 445, 472, 485, 501, 517, 531
Offset: 1

Views

Author

Roger L. Bagula, May 11 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = Table[PrimePi[n^2 + n + 41], {n, 0, 39}] (* correct only up to 39 *)
    PrimePi[Select[Table[n^2 + n + 41, {n, 0, 100}], PrimeQ]] (* Amiram Eldar, Sep 06 2024 *)

Formula

a(n) = PrimePi(A005846(n)) = A000720(A005846(n)).

Extensions

Offset corrected by Assoc. Eds. of the OEIS, Jun 15 2010

A131577 Zero followed by powers of 2 (cf. A000079).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Aug 29 2007, Dec 06 2007

Keywords

Comments

A000079 is the main entry for this sequence.
Binomial transform of A000035.
Essentially the same as A034008 and A000079.
a(n) = a(n-1)-th even natural numbers (A005846) for n > 1. - Jaroslav Krizek, Apr 25 2009
Where record values greater than 1 occur in A083662: A000045(n)=A083662(a(n)). - Reinhard Zumkeller, Sep 26 2009
Number of compositions of natural number n into parts >0.
The signed sequence 0, 1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, ... is the Lucas U(-2,0) sequence. - R. J. Mathar, Jan 08 2013
In computer programming, these are the only unsigned numbers such that k&(k-1)=0, where & is the bitwise AND operator and numbers are expressed in binary. - Stanislav Sykora, Nov 29 2013
Also the 0-additive sequence: a(n) is the smallest number larger than a(n-1) which is not the sum of any subset of earlier terms, with initial values {0, 1, 2}. - Robert G. Wilson v, Jul 12 2014
Also the smallest nonnegative superincreasing sequence: each term is larger than the sum of all preceding terms. Indeed, an equivalent definition is a(0)=0, a(n+1)=1+sum_{k=0..n} a(k). - M. F. Hasler, Jan 13 2015

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.

Crossrefs

Programs

Formula

a(n) = floor(2^(n-1)). - Robert G. Wilson v, Sep 02 2007
G.f.: x/(1-2*x); a(n) = (2^n-0^n)/2. - Paul Barry, Jan 05 2009
E.g.f.: exp(x)*sinh(x). - Geoffrey Critzer, Oct 28 2012
E.g.f.: x/T(0) where T(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Mar 17 2013
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n, 2*k-1). - Taras Goy, Jan 02 2025

Extensions

More terms from Robert G. Wilson v, Sep 02 2007
Edited by N. J. A. Sloane, Sep 13 2007
Edited by M. F. Hasler, Jan 13 2015

A007635 Primes of form n^2 + n + 17.

Original entry on oeis.org

17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 359, 397, 479, 523, 569, 617, 719, 773, 829, 887, 947, 1009, 1277, 1423, 1499, 1657, 1823, 1997, 2087, 2179, 2273, 2467, 2879, 3209, 3323, 3557, 3677, 3923, 4049, 4177, 4987, 5273
Offset: 1

Views

Author

Keywords

Comments

a(n) = A117530(7,n) for n <= 7: a(1) = A117530(7,1) = A014556(5) = 17, A117531(7) = 7. - Reinhard Zumkeller, Mar 26 2006
Note that the gaps between terms increases by 2*k from k = 1 to 15: 19 - 17 = 2, 23 - 19 = 4, 29 - 23 = 6 and so on until 257 - 227 = 30 then fails at 289 - 257 = 32 since 289 = 17^2. - J. M. Bergot, Mar 18 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n):= n^2 + n + 17 takes distinct prime values for the 16 consecutive integers n = 0 to 15. It follows that the polynomial P(n - 16) takes prime values for the 32 consecutive integers n = 0 to 31, consisting of the 16 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n - 16) = 4*n^2 - 62*n + 257 also takes prime values for the 16 consecutive integers n = 0 to 15.
2)The polynomial P(3*n - 16) = 9*n^2 - 93*n + 257 takes prime values for the 11 consecutive integers n = 0 to 10 ( = floor(31/3)). In addition, calculation shows that P(3*n-16) also takes prime values for n from -5 to -1. Equivalently put, the polynomial P(3*n-31) = 9*n^2 - 183*n + 947 takes prime values for the 16 consecutive integers n = 0 to 15. Cf. A005846 and A048059. (End)
The primes in this sequence are not primes in the ring of integers of Q(sqrt(-67)). If p = n^2 + n + 17, then ((2n + 1)/2 - sqrt(-67)/2)((2n + 1)/2 + sqrt(-67)/2) = p. For example, 3^2 + 3 + 17 = 29 and (7/2 - sqrt(-67)/2)(7/2 + sqrt(-67)/2) = 29 also. - Alonso del Arte, Nov 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 96.

Crossrefs

Programs

  • Magma
    [a: n in [0..250]|IsPrime(a) where a is n^2+n+17]; // Vincenzo Librandi, Dec 23 2010
    
  • Mathematica
    Select[Table[n^2 + n + 17, {n, 0, 99}], PrimeQ] (* Alonso del Arte, Nov 27 2019 *)
  • PARI
    select(isprime, vector(100,n,n^2+n+17)) \\ Charles R Greathouse IV, Jul 12 2016
    
  • Python
    from sympy import isprime
    it = (n**2 + n + 17 for n in range(250))
    print([p for p in it if isprime(p)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = A028823(n)^2 + A028823(n) + 17. - Seiichi Manyama, Mar 19 2017

A007641 Primes of the form 2*k^2 + 29.

Original entry on oeis.org

29, 31, 37, 47, 61, 79, 101, 127, 157, 191, 229, 271, 317, 367, 421, 479, 541, 607, 677, 751, 829, 911, 997, 1087, 1181, 1279, 1381, 1487, 1597, 1951, 2207, 2341, 2621, 2767, 2917, 3229, 3391, 3557, 3727, 4079, 4261, 4447, 4637, 4831, 5231, 5437
Offset: 1

Views

Author

Keywords

Comments

The first 29 terms of 2*k^2 + 29 (k = 0 to 28) are primes. This was discovered by Adrien-Marie Legendre. The sequence and its first 8 terms appear in the novel Code to Zero by Ken Follett. - Amiram Eldar, Apr 08 2017
Let P(k) = 2*k^2 + 29. The polynomial P(2*k - 28) = 8*k^2 - 224*k + 1597 produces prime values (not distinct) for k = 0 to 28. The polynomial P(3*k - 55) = 18*k^2 - 660*k + 6079 produces distinct prime values for k = 0 to 27. Cf. A050265. - Peter Bala, Apr 16 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ken Follett, Code to Zero, New York: Signet, 2001, p. 18.

Crossrefs

Programs

  • Magma
    [a: n in [0..60] | IsPrime(a) where a is 2*n^2+29]; // Vincenzo Librandi, Mar 20 2013
    
  • Mathematica
    Select[Table[2 n^2 + 29, {n, 0, 70}], PrimeQ] (* Vincenzo Librandi, Mar 20 2013 *)
  • PARI
    list(lim)=my(v=List(),t); for(n=0,sqrtint((lim-29)\2), if(isprime(t=2*n^2+29), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jan 20 2022

Extensions

Edited by Erich Friedman, Feb 09 2002

A050265 Primes of the form 2*n^2 + 11.

Original entry on oeis.org

11, 13, 19, 29, 43, 61, 83, 109, 139, 173, 211, 349, 461, 523, 659, 733, 811, 1069, 1163, 1579, 1693, 1811, 1933, 2749, 3373, 3539, 3709, 4243, 4813, 5011, 5419, 5843, 7211, 7699, 7949, 8461, 9533, 9811, 10093, 11261, 13789, 14461, 15149, 16573
Offset: 1

Views

Author

Keywords

Comments

The polynomial 2*n^2 + 11 first fails to produce a prime for n = 11, giving 253 = 11 * 23. - Alonso del Arte, Sep 04 2016
Let P(n) = 2*n^2 + 11. The polynomial P(2*n - 10) = 8*n^2 - 80*n + 11 produces prime values (not distinct) for n = 0 to 10. The polynomial P(3*n - 19) = 18*n^2 - 228*n + 733 produces distinct prime values for n = 0 to 9. - Peter Bala, Apr 16 2018

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 2*n^2+11]; // Vincenzo Librandi, Dec 08 2011
  • Mathematica
    Select[2Range[0, 100]^2 + 11, PrimeQ] (* Harvey P. Dale, May 20 2011 *)

Formula

a(n) = 11 + 2*(A092968(n))^2. - R. J. Mathar, Jan 03 2009

Extensions

11 added by Vincenzo Librandi, Dec 08 2011

A221712 Hardy-Littlewood constant for x^2+x+41.

Original entry on oeis.org

3, 3, 1, 9, 7, 7, 3, 1, 7, 7, 4, 7, 1, 4, 2, 1, 6, 6, 5, 3, 2, 3, 5, 5, 6, 8, 5, 7, 6, 4, 9, 8, 8, 7, 9, 6, 6, 4, 6, 8, 5, 5, 4, 5, 8, 5, 6, 5, 2, 9, 8, 5, 8, 4, 9, 1, 5, 3, 9, 4, 0, 7, 2, 7, 9, 5, 0, 2, 6, 3, 3, 1, 0, 4, 2, 6, 1, 1, 8, 1, 4, 9, 7, 3, 7, 5, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2013

Keywords

Examples

			3.31977317747142166532355685764988796646855...
		

References

  • Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 265-266.

Crossrefs

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+x+41)/2 after setting the required precision.

Extensions

More terms from Hugo Pfoertner, Jan 31 2020

A048988 Primes of the form 4*k^2 + 4*k + 59.

Original entry on oeis.org

59, 67, 83, 107, 139, 179, 227, 283, 347, 419, 499, 587, 683, 787, 1019, 1283, 1427, 1579, 1907, 2083, 2267, 2459, 2659, 3083, 3307, 3539, 3779, 4027, 4283, 4547, 5099, 5387, 5683, 5987, 6299, 6619, 6947, 7283, 8707, 9467, 9859, 10259, 10667, 11083
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Apr 18 2018: (Start)
Let P(n) = 4*n^2 + 4*n + 59. The polynomial 1/2*P(n-1/2) = 2*n^2 + 29 has prime values for n from 0 to 28. See A007641. Also P(n-14) = 4*n^2 - 108*n + 787 is prime for the 28 consecutive values of n from 0 to 27.
The sequence of 28 values of the polynomial 4*P((n-2)/4) = n^2 + 232 for n from -1 to 26 is [233, 2^3*29, 233, 2^2*59, 241, 2^3*31, 257, 2^2*67, 281, 2^3*37, 313, 2^2*83, 353, 2^3*47, 401, 2^2*107, 457, 2^3*61, 521, 2^2*139, 593, 2^3*79, 673, 2^2*179, 761, 2^3*101, 857, 2^2*227], and consists of 7 groups of 4 numbers of the form p_1, 2^3*p_2, p_3, 2^2*p_4, where the p's are prime numbers. (End)

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 4*n^2 +4*n + 59]; // Vincenzo Librandi, Nov 19 2010
    
  • Maple
    select(isprime, [4*k*(k+1)+59$k=0..100])[];  # Alois P. Heinz, Apr 16 2025
  • Mathematica
    Select[(4 #^2 + 4 # + 59) & /@ Range[0, 100], PrimeQ] (* Robert Price, Apr 16 2025 *)
  • PARI
    lista(nn) = for(k=0, nn, if(isprime(p=4*k^2+4*k+59), print1(p, ", "))); \\ Altug Alkan, Apr 18 2018

A050267 Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.

Original entry on oeis.org

10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1

Views

Author

Keywords

Comments

Terms are listed in the order of their appearance in sequence b.
This is a transformed version of the polynomial P(x) = 47*x^2 + 9*x - 5209 whose absolute value gives 43 distinct primes for -24 <= x <= 18, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, May 10 2007
Further edited by Klaus Brockhaus, Mar 20 2010
More terms (to distinguish from quadratic) from Charles R Greathouse IV, Jun 18 2017

A271980 Numbers k such that 3*k^2 + 39*k + 37 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 63, 64, 66, 68, 69, 70, 71, 72, 79, 84, 86, 88, 89, 90, 91, 92
Offset: 1

Views

Author

Robert Price, Apr 17 2016

Keywords

Comments

From Peter Bala, Apr 16 2018: (Start)
Let P(n) = 3*n^2 + 39*n + 37. The absolute values of the polynomial P(2*n - 29) = 12*n^2 - 270*n + 1429 for n from 0 to 27 are distinct primes, except at n = 14 when the value is 1.
The absolute values of the polynomial 3*P((n - 20)/3) = n^2 - n - 269 for n from 0 to 42 are either prime or 3 times a prime.
The absolute values of the polynomial 3*P((4*n - 89)/3) = 16*n^2 - 556*n + 4561 for n from 0 to 27 are either prime or 3 times a prime. (End)

Examples

			4 is in this sequence since 3*4^2 + 39*4 + 37 = 48+156+37 = 241 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] |IsPrime(3*n^2+39*n+37)]; // Vincenzo Librandi, Apr 19 2018
  • Mathematica
    Select[Range[0, 100], PrimeQ[3*#^2 + 39*# + 37] &]
  • PARI
    isok(n) = isprime(3*n^2 + 39*n + 37); \\ Michel Marcus, Apr 17 2016
    
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(3*n^2+39*n+37), print1(n, ", "))); \\ Altug Alkan, Apr 18 2016
    

A272074 Numbers k such that k^4 + 29*k^2 + 101 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 26, 31, 32, 34, 35, 37, 43, 44, 45, 47, 49, 53, 56, 60, 61, 62, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 81, 84, 85, 89, 90, 91, 93, 96, 99
Offset: 1

Views

Author

Robert Price, Apr 19 2016

Keywords

Examples

			4 is in this sequence since 4^4 + 29*4^2 + 101 = 256+464+101 = 821 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,100],PrimeQ[#^4+29#^2+101]&] (* Harvey P. Dale, Dec 15 2020 *)
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(n^4+29*n^2+101), print1(n, ", "))); \\ Altug Alkan, Apr 19 2016
Showing 1-10 of 119 results. Next