cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A272410 Primes of the form abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) in order of increasing nonnegative n.

Original entry on oeis.org

213589, 171329, 135089, 104323, 78509, 57149, 39769, 25919, 15173, 7129, 1409, 2341, 4451, 5227, 4951, 3881, 2251, 271, 1873, 4019, 6029, 7789, 9209, 10223, 10789, 10889, 10529, 9739, 8573, 7109, 5449, 3719, 2069, 673, 271, 541, 109, 1949, 5273, 10399, 17669
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Examples

			78509 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^4 - 97n^3 + 3294n^2 - 45458n + 213589, PrimeQ[#] &]

A272443 Nonnegative numbers n such that abs(n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 53, 57, 58, 59, 64, 67, 70, 75, 79, 80, 81, 89, 91, 92, 93, 96, 99
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

47 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(4^5 - 99*4^4 + 3588*4^3 - 56822*4^2 + 348272*4 - 286397) = abs(1024-25344+229632-909152+1393088-286397) = 402851 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^5 - 99#^4 + 3588#^3 - 56822#^2 + 348272# - 286397] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(n^5-99*n^4+3588*n^3-56822*n^2+348272*n-286397)), print1(n, ", "))); \\ Altug Alkan, Apr 29 2016

A267252 Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.

Original entry on oeis.org

50383, 45779, 41381, 37189, 33203, 29423, 25849, 22481, 19319, 16363, 13613, 11069, 8731, 6599, 4673, 2953, 1439, 131, 971, 1867, 2557, 3041, 3319, 3391, 3257, 2917, 2371, 1619, 661, 503, 1873, 3449, 5231, 7219, 9413, 11813, 14419, 17231, 20249, 23473, 26903
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Comments

This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

Examples

			33203 is in this sequence since 103*4^2 - 4707*4 + 50383  = 1648-18828+50383 = 33203 is prime.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ Altug Alkan, Apr 28 2016, corrected by Hugo Pfoertner, Dec 13 2019

Extensions

Title corrected by Hugo Pfoertner, Dec 13 2019

A268200 Nonnegative numbers n such that abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 62, 65, 67, 70, 72, 73, 74, 75, 84, 85, 86, 90, 92
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Comments

50 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^4 - 97#^3 + 3294#^2 - 45458# + 213589] &]
  • PARI
    is(n)=isprime(abs(n^4-97*n^3+3294*n^2-45458*n+213589)) \\ Charles R Greathouse IV, Feb 20 2017

A271348 Primes p such that p + 2*k^2 is prime for at least 10 consecutive values of k starting from k=1.

Original entry on oeis.org

11, 29, 438926021, 1210400879, 7446335849, 31757068151, 33090566651, 33164857769, 40137398219, 45133754591, 46642404071, 100444384301, 114546675671, 144553207691, 159587584529, 161557039991, 166054101539, 210447830009, 227625400031, 236241327599, 254850262949, 272259344081
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 04 2016

Keywords

Comments

Number 10 was chosen as a threshold as the smallest two digit number. You can choose other numbers and if they are less than 12, the first terms of sequences analogous to this one will be those in A165234.
There are 20 primes like that among the first 10^10 of them. The second term, 29, generates 28 primes (A007641). Sixteen others, including 11 (A050265), generate only 10 primes, while three produce 11 primes. These three are: 33164857769 (see also A165234), 159587584529, and 236241327599. The first term among the second 10^10 of primes is 254850262949. Then there is 272259344081 (mentioned in A165234) that generates 13 primes.
All these primes end with 1 or 9 and are congruent to 5 mod 6.

Examples

			11 is a term because 11+2*k^2 gives rise to 10 primes for 10 consecutive values of k starting from 1 (see A050265).
		

Crossrefs

Cf. A000040 (primes), A050265, A007641, A271366, A271818, A271819, A271820 (examples of sequences of primes generated by terms of this sequence), A165234.

Programs

  • Mathematica
    lst={}; Do[k=1; While[PrimeQ[Prime[n]+2*k^2], k++]; If[k>10, AppendTo[lst, Prime[n]]], {n, 2, 11*10^9}]; lst
    Select[Prime[Range[107669*10^5]],AllTrue[#+{2,8,18,32,50,72,98,128,162,200},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* The program will take a long time to run *) (* Harvey P. Dale, Jan 24 2021 *)
  • PARI
    forprime(n=2, 276241327599, k=1; while(isprime(n+2*k^2), k++); (k>10)&&print1(n, ", "))

A271366 Primes of the form 272259344081 + 2*n^2.

Original entry on oeis.org

272259344081, 272259344083, 272259344089, 272259344099, 272259344113, 272259344131, 272259344153, 272259344179, 272259344209, 272259344243, 272259344281, 272259344323, 272259344369, 272259344419, 272259344881, 272259345433, 272259345539, 272259347123, 272259347281, 272259347953
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 05 2016

Keywords

Comments

The first 14 primes correspond to the values of n from 0 to 13. The first term is a member of A271348 and A165234.

Examples

			For n=0, we get 272259344081, which is a prime as determined in A271348.
For n=1, we get 272259344081 + 2*1^2 = 272259344083, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271818, A271819, A271820 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[272259344081+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(272259344081+2*n^2) && print1(272259344081+2*n^2, ","))

A271818 Primes of the form 33164857769 + 2*n^2.

Original entry on oeis.org

33164857769, 33164857771, 33164857777, 33164857787, 33164857801, 33164857819, 33164857841, 33164857867, 33164857897, 33164857931, 33164857969, 33164858011, 33164858347, 33164858569, 33164858737, 33164859019, 33164859569, 33164859691, 33164859817, 33164860219, 33164860507, 33164862769, 33164863177, 33164864731, 33164864969, 33164865457, 33164865961, 33164866481, 33164868427, 33164869321
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 14 2016

Keywords

Comments

The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348 and A165234.

Examples

			For n=0, we get 33164857769, which is a prime as determined in A271348.
For n=1, we get 33164857769 + 2*1^2 = 33164857771, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271366, A271819, A271820 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[33164857769+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(33164857769+2*n^2) && print1(33164857769+2*n^2, ", "))

A271819 Primes of the form 159587584529 + 2*n^2.

Original entry on oeis.org

159587584529, 159587584531, 159587584537, 159587584547, 159587584561, 159587584579, 159587584601, 159587584627, 159587584657, 159587584691, 159587584729, 159587584771, 159587585107, 159587585329, 159587585681, 159587585881, 159587586097, 159587586451, 159587586707, 159587586979
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 14 2016

Keywords

Comments

The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348.

Examples

			For n=0, we get 159587584529, which is a prime as determined in A271348.
For n=1, we get 159587584529 + 2*1^2 = 159587584531, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348 (contains the first term), A050265, A007641, A271366, A271818, A271820 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[159587584529+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(159587584529+2*n^2) && print1(159587584529+2*n^2, ", "))

A271820 Primes of the form 236241327599 + 2*n^2.

Original entry on oeis.org

236241327599, 236241327601, 236241327607, 236241327617, 236241327631, 236241327649, 236241327671, 236241327697, 236241327727, 236241327761, 236241327799, 236241327841, 236241328177, 236241328751, 236241330049, 236241331831, 236241332207, 236241332401, 236241333649, 236241334799
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 14 2016

Keywords

Comments

The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348.

Examples

			For n=0, we get 236241327599, which is a prime as determined in A271348.
For n=1, we get 236241327599 + 2*1^2 = 236241327601, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348 (contains the first term), A050265, A007641, A271366, A271818, A271819 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[236241327599+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(236241327599+2*n^2) && print1(236241327599+2*n^2, ", "))

A272555 Primes of the form abs(1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236)) in order of increasing nonnegative n.

Original entry on oeis.org

965201, 653687, 429409, 272563, 166693, 98321, 56597, 32969, 20873, 15443, 13241, 12007, 10429, 7933, 4493, 461, 3583, 6961, 9007, 9157, 7019, 2423, 4549, 13553, 23993, 35051, 45737, 54959, 61613, 64693, 63421, 57397, 46769, 32423, 16193, 1091, 8443, 6271
Offset: 1

Views

Author

Robert Price, May 02 2016

Keywords

Examples

			166693 is in this sequence since abs(1/(36)(4^6 - 126*4^5 + 6217*4^4 - 153066*4^3 + 1987786*4^2 - 13055316*4 + 34747236)) = abs((4096 - 129024 + 1591552 - 9796224 + 31804576 - 5222126 + 34747236)/36) = 166693 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236), PrimeQ[#] &]
Previous Showing 21-30 of 54 results. Next