cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A235683 Numbers n such that (46^n + 1)/47 is prime.

Original entry on oeis.org

7, 23, 59, 71, 107, 223, 331, 2207, 6841, 94841
Offset: 1

Views

Author

Robert Price, Jan 13 2014

Keywords

Comments

All terms up to a(10) are primes.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (46^p + 1)/47 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((46^n+1)/47) \\ Charles R Greathouse IV, May 22 2017

A237052 Numbers n such that (49^n + 1)/50 is prime.

Original entry on oeis.org

7, 19, 37, 83, 1481, 12527, 20149
Offset: 1

Views

Author

Robert Price, Feb 02 2014

Keywords

Comments

All terms are primes.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (49^p + 1)/50 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((49^n+1)/50) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Typo in description corrected by Ray Chandler, Feb 20 2017

A309533 Numbers k such that (144^k + 1)/145 is prime.

Original entry on oeis.org

23, 41, 317, 3371, 45259, 119671
Offset: 1

Views

Author

Paul Bourdelais, Aug 06 2019

Keywords

Comments

The corresponding primes are terms of A059055. - Bernard Schott, Aug 09 2019

Crossrefs

Programs

  • Mathematica
    Do[p=Prime[n]; If[PrimeQ[(144^p + 1)/145], Print[p]], {n, 1, 1000000}]
  • PARI
    is(n)=ispseudoprime((144^n+1)/145)

A227979 Integers not of the form (a^k+b^k)/(a+b) for any positive integer values of a, b, k with b > a.

Original entry on oeis.org

2, 4, 6, 8, 9, 14, 16, 18, 22, 23, 24, 32, 33, 36, 38, 42, 44, 46, 47, 54, 56, 59, 62, 64, 66, 69, 71, 72, 77, 81, 83, 86, 88, 92, 94, 96, 98, 99, 107, 114, 118, 121, 126, 128, 131, 132, 134, 138, 141, 142, 144, 152, 154, 158, 161, 162, 166, 167, 168, 177
Offset: 1

Views

Author

Robert Price, Sep 30 2013

Keywords

Comments

This form, (a^k+b^k)/(a+b), is a generalization of the Fermat numbers.
Not all integers are in this set.
See A229791 for the complement of this sequence.

Crossrefs

A few of the sequences using this form that identify primes are A000978, A007658, A057469, A128066, A057171, A082387, A122853, A128335.

Programs

  • Mathematica
    limit=200; lst = {}; Do[p = (a^k + b^k)/(a + b); If[p <= limit && IntegerQ[p], AppendTo[lst, p]], {k, Log[2,3*limit+1]}, {b, 2, limit*2}, {a, b-1}]; Complement[Range[limit], Union[lst]]

A229791 Integers generated by (a^k+b^k)/(a+b) for all possible positive integer values of a,b,k with b>a.

Original entry on oeis.org

1, 3, 5, 7, 10, 11, 12, 13, 15, 17, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 34, 35, 37, 39, 40, 41, 43, 45, 48, 49, 50, 51, 52, 53, 55, 57, 58, 60, 61, 63, 65, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 82, 84, 85, 87, 89, 90, 91, 93, 95, 97, 100, 101, 102, 103
Offset: 1

Views

Author

Robert Price, Sep 29 2013

Keywords

Comments

This form, (a^k+b^k)/(a+b), is a generalization of the Fermat numbers.
Not all integers are in this set.
See A227979 for the complement of this sequence.

Crossrefs

A few of the sequences using this form that identify primes are A000978, A007658, A057469, A128066, A057171, A082387, A122853, A128335.

Programs

  • Mathematica
    limit=105; lst = {}; Do[p = (a^k + b^k)/(a + b); If[p <= limit && IntegerQ[p], AppendTo[lst, p]], {k, Log[2,3*limit+1]}, {b, 2, limit*2}, {a, b-1}]; Union[lst]

A236167 Numbers k such that (47^k + 1)/48 is prime.

Original entry on oeis.org

5, 19, 23, 79, 1783, 7681
Offset: 1

Views

Author

Robert Price, Jan 19 2014

Keywords

Comments

a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((47^n+1)/48) \\ Charles R Greathouse IV, Jun 06 2017
    
  • Python
    from sympy import isprime
    def afind(startat=0, limit=10**9):
      pow47 = 47**startat
      for k in range(startat, limit+1):
        q, r = divmod(pow47+1, 48)
        if r == 0 and isprime(q): print(k, end=", ")
        pow47 *= 47
    afind(limit=300) # Michael S. Branicky, May 19 2021

A185230 Numbers n such that (33^n + 1)/34 is prime.

Original entry on oeis.org

5, 67, 157, 12211, 313553
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (33^p + 1)/34 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((33^n+1)/34) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5) from Paul Bourdelais, Feb 26 2021

A236530 Numbers n such that (48^n + 1)/49 is prime.

Original entry on oeis.org

5, 17, 131, 84589
Offset: 1

Views

Author

Robert Price, Jan 27 2014

Keywords

Comments

All terms are primes.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (48^p + 1)/49 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((48^n+1)/49) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Incorrect first term deleted by Robert Price, Feb 21 2014

A275575 Numbers k such that (3^k + 1)/(3 - (-1)^k) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 13, 16, 23, 32, 43, 64, 281, 359, 487, 577, 1579, 1663, 1741, 3191, 9209, 11257, 12743, 13093, 17027, 26633, 104243, 134227, 152287, 700897, 1205459
Offset: 1

Views

Author

Thomas Ordowski, Dec 25 2016

Keywords

Crossrefs

Programs

  • Maple
    A275575:=n->`if`(isprime((3^n + 1)/(3 - (-1)^n)), n, NULL): seq(A275575(n), n=1..2*10^3); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Select[Range[0, 10^3], PrimeQ[(3^# + 1)/(3 - (-1)^#)] &]
  • PARI
    isok(n) = isprime( (3^n + 1)/(3 - (-1)^n)); \\ Michel Marcus, Dec 26 2016
Previous Showing 21-29 of 29 results.