A175925 a(n) = (2*n+1)*(n+1)!.
1, 6, 30, 168, 1080, 7920, 65520, 604800, 6168960, 68947200, 838252800, 11017036800, 155675520000, 2353813862400, 37922556672000, 648606486528000, 11737685127168000, 224083079700480000, 4500868715126784000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- D. H. Bailey, J. M. Borwein, R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, eq (18).
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Programs
-
Magma
[(2*n+1)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
Maple
A := proc(n) (2*n+1)*(n+1)! ; end proc:
-
Mathematica
Table[(2n+1)(n+1)!,{n,0,20}] (* Harvey P. Dale, Sep 30 2011 *)
Formula
E.g.f.: (1 + 3*x)/(1 - x)^3. - Ilya Gutkovskiy, May 12 2017
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1) + 1 - e.
Sum_{n>=0} (-1)^n/a(n) = sqrt(Pi)*erf(1) - 1 + 1/e. (End)
Comments