cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A175925 a(n) = (2*n+1)*(n+1)!.

Original entry on oeis.org

1, 6, 30, 168, 1080, 7920, 65520, 604800, 6168960, 68947200, 838252800, 11017036800, 155675520000, 2353813862400, 37922556672000, 648606486528000, 11737685127168000, 224083079700480000, 4500868715126784000
Offset: 0

Views

Author

R. J. Mathar, Oct 19 2010

Keywords

Comments

The denominators of the Taylor expansion coefficients of the double integral d(u) = int_0^1 dx int_0^1 dy exp(-u^2*(x-y)^2) = Sum_{n>=0} (-1)^n*u^(2n)/a(n).

Crossrefs

Programs

  • Magma
    [(2*n+1)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
  • Maple
    A := proc(n) (2*n+1)*(n+1)! ; end proc:
  • Mathematica
    Table[(2n+1)(n+1)!,{n,0,20}] (* Harvey P. Dale, Sep 30 2011 *)

Formula

a(n) = A005408(n)*A000142(n+1) = (n+1)*A007680(n).
E.g.f.: (1 + 3*x)/(1 - x)^3. - Ilya Gutkovskiy, May 12 2017
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1) + 1 - e.
Sum_{n>=0} (-1)^n/a(n) = sqrt(Pi)*erf(1) - 1 + 1/e. (End)

A061018 Triangle: a(n,m) = number of permutations of (1,2,...,n) with one or more fixed points in the m first positions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 13, 15, 24, 42, 56, 67, 76, 120, 216, 294, 358, 411, 455, 720, 1320, 1824, 2250, 2612, 2921, 3186, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 40320, 75600, 106560, 133800, 157824, 179058, 197864, 214551, 229384
Offset: 1

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Row sums of n are the number of derangements (permutations without fixed point) of n+1, i.e. A000166(n+1).

Examples

			For n=3, the permutations are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1); and (x, 2, 3), (x, 3, 2) have a fixed point x in position 1, (x, x, 3), (x, 3, 2), (3, x, 1) have a fixed point x in positions 1 or 2 and (x, x, x), (2, 1, x), (x, 3, 2), (3, x, 1) have a fixed point x in positions 1, 2 or 3, hence {2, 3, 4}
{1},
{1, 1},
{2, 3, 4},
{6, 10, 13, 15},
{24, 42, 56, 67, 76},
{120, 216, 294, 358, 411, 455},
{720, 1320, 1824, 2250, 2612, 2921, 3186}, ...
		

Crossrefs

Programs

  • Maple
    A061018 := proc(n,m): (n-1)! + add(A061312(n-2,k), k=0..m-2) end: A061312:= proc(n,m): if m=-1 then 0 elif m=0 then n*n! else procname(n,m-1) - procname(n-1,m-1) fi: end: seq(seq(A061018(n,m), m=1..n), n=1..8); # Johannes W. Meijer, Jul 27 2011
    T := (n, k) -> `if`(n=k,n!-GAMMA(n+1,-1)/exp(1),n!*(1-hypergeom([-k],[-n],-1))):
    for n from 1 to 9 do seq(simplify(T(n,k)), k=1..n) od; # Peter Luschny, Oct 03 2017
  • Mathematica
    Table[Count[Permutations[Range[n]], p_/;( Times@@Take[(p-Range[n]), k]===0)], {n, 7}, {k, n}]

Formula

a(n,m) = (n-1)! + Sum_{k=0..m-2} T(n-2, k) where T(n,-1) = 0, T(0,0) = 0, T(n,0) = A001563(n) = n*n!, T(n,m) = T(n,m-1) - T(n-1,m-1) (see A061312).
T(n, k) = n!*(1 - hypergeom([-k], [-n], -1)) for 1 <= k < n and T(n, n) = n! -Gamma(n+1, -1)/exp(1). - Peter Luschny, Oct 03 2017

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011

A069286 Decimal expansion of constant rho satisfying Gaussian Phi(rho * sqrt(2)) = erf(rho) = 1/2.

Original entry on oeis.org

4, 7, 6, 9, 3, 6, 2, 7, 6, 2, 0, 4, 4, 6, 9, 8, 7, 3, 3, 8, 1, 4, 1, 8, 3, 5, 3, 6, 4, 3, 1, 3, 0, 5, 5, 9, 8, 0, 8, 9, 6, 9, 7, 4, 9, 0, 5, 9, 4, 7, 0, 6, 4, 4, 7, 0, 3, 8, 8, 2, 6, 9, 5, 9, 1, 9, 3, 8, 3, 4, 4, 7, 7, 7, 4, 6, 4, 6, 7, 3, 3, 4, 8, 8, 6, 9, 5, 9, 1, 5, 8, 6, 9, 9, 8, 9, 0, 0, 9, 9, 4, 8, 0, 3, 3
Offset: 0

Views

Author

Frank Ellermann, Mar 13 2002

Keywords

Comments

In Bronstein-Semendjajew, Gaussian Phi is the probability integral, i.e., 2 * Normal Distribution Function.

Examples

			0.4769362762044698733814183536431305598089697490594706447...
		

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 6.1.2.

Crossrefs

Cf. A069287 (continued fraction), A007680.

Programs

A082034 a(n) = (4*n + 1)*n!.

Original entry on oeis.org

1, 5, 18, 78, 408, 2520, 18000, 146160, 1330560, 13426560, 148780800, 1796256000, 23471078400, 330032102400, 4969162598400, 79768136448000, 1359981342720000, 24542432538624000, 467373280518144000, 9366672731480064000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the array A082037.

Crossrefs

Programs

Formula

a(n) = A016813(n)*n!.
(-4*n+3)*a(n) + n*(4*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 07 2014
4*a(n) + (-4*n-7)*a(n-1) + 3*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 07 2014

A125750 A Moessner triangle using (1, 3, 5, ...).

Original entry on oeis.org

1, 3, 5, 10, 19, 11, 42, 89, 64, 19, 216, 498, 415, 160, 29, 1320, 3254, 3023, 1385, 335, 41, 9360, 24372, 24640, 12803, 3745, 623, 55, 75600, 206100, 223116, 127799, 42938, 8750, 1064, 71, 685440, 1943568, 2227276, 1380076, 516201, 122010, 18354, 1704
Offset: 1

Views

Author

Gary W. Adamson, Dec 06 2006

Keywords

Comments

Right border of the triangle = A028387, left border = A007680.

Examples

			Circling the 1, 3, 6, ...(-th) terms in the sequence (1, 3, 5, 7, ...), we get A018387: (1, 5, 11, 19, 29, ...). Taking partial sums of the remaining terms, we get (3, 10, 19, 32, ...) in row 2 and we circle 3 and 19. In row 3 we circle the 10.
First few rows of the triangle are:
    1;
    3,   5;
   10,  19,  11;
   42,  89,  64,  19;
  216, 498, 415, 160,  29;
  ...
		

References

  • J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, pp. 63-64.

Crossrefs

Formula

Using "Moessner's Magic" (Conway and Guy, pp. 63-64; cf. A125714), we circle the 1, 3, 6, 10, ...(-th) terms in the sequence (1, 3, 5, 7, ...) and take partial sums of the remaining terms, making row 2. Circle the terms in row 2 one place offset to the left of row 1 terms, then take partial sums. Continue with analogous operations for succeeding rows. The triangle = leftmost circled terms in each row.

Extensions

More terms from Joshua Zucker, Jun 17 2007

A007683 a(1) = 1; a(n) = -Sum_{k = 1..n-1} (n+k)!a(k)/(2k)!.

Original entry on oeis.org

1, -3, 3, 9, 21, -33, -1173, -13515, -113739, -532209, 6284379, 264830061, 5897799141, 104393462439, 1459983940203, 10308316834293, -308010522508395, -19576840707893409, -726806556195360069, -22261372611370303875, -591210850189999983099
Offset: 1

Views

Author

Keywords

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A067000.

A046900 Triangle inverse to that in A046899.

Original entry on oeis.org

1, -1, 1, 1, -3, 2, 1, 3, -10, 6, -1, 9, 10, -42, 24, -17, 21, 50, 42, -216, 120, -107, -33, 230, 294, 216, -1320, 720, -415, -1173, 670, 1974, 1944, 1320, -9360, 5040, 1231, -13515, -4510, 11130, 17064, 14520, 9360, -75600, 40320, 56671, -113739, -131230, 20202, 136296, 157080, 121680, 75600
Offset: 0

Views

Author

Keywords

Comments

Sequence gives numerators; denominators are A001813.

Examples

			1; -1/2 1/2; 1/12 -3/12 2/12; ...
		

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.

Crossrefs

Programs

  • Maple
    with(linalg): b:=proc(n,k) if k<=n then binomial(n+k,k) else 0 fi end: bb:=(n,k)->b(n-1,k-1): B:=matrix(12,12,bb): A:=inverse(B): a:=(n,k)->((2*n-2)!/(n-1)!)*A[n,k]: for n from 0 to 10 do seq(a(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch
  • Mathematica
    max = 10; b[n_, k_] := If[k <= n, Binomial[n+k, k], 0]; BB = Table[b[n, k], {n, 0, max-1}, {k, 0, max-1}]; AA = Inverse[BB]; a[n_, k_] := ((2n-2)!/(n-1)!)*AA[[n, k]]; Flatten[ Table[ a[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Aug 08 2012, after Emeric Deutsch *)

Extensions

More terms from Emeric Deutsch, Jun 25 2005

A082035 a(n) = (4n^2+2n+1) * n!.

Original entry on oeis.org

1, 7, 42, 258, 1752, 13320, 113040, 1063440, 11007360, 124467840, 1527724800, 20237817600, 287879961600, 4377595622400, 70875950745600, 1217444836608000, 22115388911616000, 423623726862336000, 8534364149735424000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the number array A082038.

Crossrefs

Programs

  • Mathematica
    Table[(4n^2+2n+1)n!,{n,0,20}] (* Harvey P. Dale, Jul 15 2011 *)

Formula

a(n) = 4*A002775(n) + A007680(n).

A347909 Decimal expansion of Integral_{x=0..1} exp(-x^2) dx.

Original entry on oeis.org

7, 4, 6, 8, 2, 4, 1, 3, 2, 8, 1, 2, 4, 2, 7, 0, 2, 5, 3, 9, 9, 4, 6, 7, 4, 3, 6, 1, 3, 1, 8, 5, 3, 0, 0, 5, 3, 5, 4, 4, 9, 9, 6, 8, 6, 8, 1, 2, 6, 0, 6, 3, 2, 9, 0, 2, 7, 6, 5, 4, 4, 9, 8, 9, 5, 8, 6, 0, 5, 3, 2, 7, 5, 6, 1, 7, 7, 2, 8, 3, 1, 4, 9, 7, 8, 4, 8, 4, 2, 9, 8
Offset: 0

Views

Author

Jianing Song, Sep 18 2021

Keywords

Examples

			0.74682413281242702539946743613185300535449968...
		

Crossrefs

Cf. A019704 (sqrt(Pi)/2 = Integral_{x=0..+oo} exp(-x^2) dx), A002161 (sqrt(Pi) = Integral_{x=-oo..+oo} exp(-x^2) dx).
Cf. A347910 (inverse integrand), A007680.

Programs

  • Mathematica
    RealDigits[(Sqrt[Pi]/2) Erf[1], 10, 91][[1]]
  • PARI
    intnum(x=0, 1, exp(-x^2)) \\ Michel Marcus, Sep 18 2021

Formula

Equals (sqrt(Pi)/2) * erf(1) = (sqrt(Pi)/(2*i)) * erfi(i).
Equals Sum_{k>=0} (-1)^k / ((2*k + 1)*k!). - Ilya Gutkovskiy, Sep 18 2021

A347910 Decimal expansion of Integral_{x=0..1} exp(x^2) dx.

Original entry on oeis.org

1, 4, 6, 2, 6, 5, 1, 7, 4, 5, 9, 0, 7, 1, 8, 1, 6, 0, 8, 8, 0, 4, 0, 4, 8, 5, 8, 6, 8, 5, 6, 9, 8, 8, 1, 5, 5, 1, 2, 0, 8, 7, 0, 0, 9, 6, 2, 1, 6, 7, 3, 9, 1, 8, 5, 6, 6, 0, 1, 1, 4, 5, 8, 0, 2, 1, 8, 7, 6, 3, 3, 1, 4, 2, 9, 0, 9, 7, 9, 1, 7, 0, 8, 2, 1, 8, 9, 9, 8, 1, 2
Offset: 1

Views

Author

Jianing Song, Sep 18 2021

Keywords

Examples

			1.462651745907181608804048586856988155...
		

Crossrefs

Cf. A347909 (inverse integrand), A007680.

Programs

  • Mathematica
    RealDigits[(Sqrt[Pi]/2) Erfi[1], 10, 91][[1]]
  • PARI
    intnum(x=0, 1, exp(x^2)) \\ Michel Marcus, Sep 18 2021

Formula

Equals (sqrt(Pi)/2) * erfi(1) = (sqrt(Pi)/(2*i)) * erf(i).
Equals Sum_{k>=0} 1 / ((2*k + 1)*k!) . - Ilya Gutkovskiy, Sep 18 2021
Equals A019704 * A099288. - R. J. Mathar, Sep 30 2021
Previous Showing 21-30 of 35 results. Next