A155856
Triangle T(n,k) = binomial(2*n-k, k)*(n-k)!, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 10, 6, 1, 24, 42, 30, 10, 1, 120, 216, 168, 70, 15, 1, 720, 1320, 1080, 504, 140, 21, 1, 5040, 9360, 7920, 3960, 1260, 252, 28, 1, 40320, 75600, 65520, 34320, 11880, 2772, 420, 36, 1, 362880, 685440, 604800, 327600, 120120, 30888, 5544, 660, 45, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 10, 6, 1;
24, 42, 30, 10, 1;
120, 216, 168, 70, 15, 1;
720, 1320, 1080, 504, 140, 21, 1;
5040, 9360, 7920, 3960, 1260, 252, 28, 1;
-
Table[Binomial[2n-k,k](n-k)!,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 24 2017 *)
-
flatten([[factorial(n-k)*binomial(2*n-k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A154987
Triangle read by rows: T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n!/k!)*(2*(n + k) - 1).
Original entry on oeis.org
-2, 4, 4, 13, 20, 13, 41, 69, 69, 41, 183, 268, 264, 268, 183, 1099, 1405, 1080, 1080, 1405, 1099, 7943, 9486, 5970, 4080, 5970, 9486, 7943, 65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547, 604831, 685672, 384552, 149520, 77280, 149520, 384552, 685672, 604831
Offset: 0
-2;
4, 4;
13, 20, 13;
41, 69, 69, 41;
183, 268, 264, 268, 183;
1099, 1405, 1080, 1080, 1405, 1099;
7943, 9486, 5970, 4080, 5970, 9486, 7943;
65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547;
...
-
t:= proc(n,k) option remember; ## simplified t;
2*(n+k-1/2)*(n!/k!);
end proc:
A154987:= proc(n,k) ## n >= 0 and k = 0 .. n
t(n,k) + t(n,n-k)
end proc: # Yu-Sheng Chang, Apr 13 2020
-
(* First program *)
t[n_, k_]:= 2*n!*Gamma[n+k+1/2]/(k!*Gamma[n+k-1/2]);
T[n_, k_]:= t[n, k] + t[n,n-k];
Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten
(* Second Program *)
T[n_, k_]:= Binomial[n, k]*((n-k)!*(2*n+2*k-1) + k!*(4*n-2*k-1));
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 28 2020 *)
-
def T(n, k): return binomial(n, k)*(factorial(n-k)*(2*n+2*k-1) + factorial(k)*(4*n-2*k-1))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 28 2020
A364817
Triangle read by rows: T(n,k) = number of permutations p of [n] such that max(|p(p(i)) - i|)=k (n>=1, 0<=k<=n-1).
Original entry on oeis.org
1, 2, 0, 4, 0, 2, 10, 2, 6, 6, 26, 6, 22, 36, 30, 76, 24, 92, 144, 216, 168, 232, 80, 334, 640, 1150, 1524, 1080, 764, 312, 1328, 2984, 5516, 9712, 11784, 7920, 2620, 1152, 5234, 13296, 27668, 55750, 90240, 101400, 65520, 9496, 4616, 21780, 62124, 144564, 306272, 601756, 909312, 964080, 604800
Offset: 1
Triangle starts:
1;
2, 0;
4, 0, 2;
10, 2, 6, 6;
26, 6, 22, 36, 30;
76, 24, 92, 144, 216, 168;
232, 80, 334, 640, 1150, 1524, 1080;
764, 312, 1328, 2984, 5516, 9712, 11784, 7920;
2620, 1152, 5234, 13296, 27668, 55750, 90240, 101400, 65520;
Showing 1-3 of 3 results.
Comments